Loading…

Preparation, Morphology and Properties of Poly(Trimethylene Terephthalate)/Thermoplastic Polyester Elastomer Blends

Poly(trimethylene terephthalate)(PTT)/thermoplastic polyester elastomer (TPEE) blends were prepared and their miscibility, crystallization and melting behaviors, phase morphology, dynamic mechanical behavior, rheology behavior, spherulites morphology, and mechanical properties were investigated by d...

Full description

Saved in:
Bibliographic Details
Published in:Journal of macromolecular science. Physics 2014-09, Vol.53 (9), p.1553-1573
Main Authors: Bai, Yuqing, Lv, Shufang, Liu, Feng, Run, Ming-Tao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Poly(trimethylene terephthalate)(PTT)/thermoplastic polyester elastomer (TPEE) blends were prepared and their miscibility, crystallization and melting behaviors, phase morphology, dynamic mechanical behavior, rheology behavior, spherulites morphology, and mechanical properties were investigated by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), parallel-plate rotational rheometry, polarized optical microscopy (POM), wide angle X-ray diffraction (WAXD), universal tensile tester and impact tester, respectively. The results suggested that PTT and TPEE were partially miscible in the amorphous state, the TPEE rich phase was dispersed uniformly in the solid matrix with a size smaller than 2 μm, and the glass transition temperatures of the blends decreased with increasing TPEE content. The TPEE component had a good effect on toughening the PTT without depressing the tensile strength. The blends had improved melt viscosities for processing. When the blends crystallized from the melt state, the onset crystallization temperature decreased, but they had a faster crystallization rate at low temperatures. All the blends' melts exhibited a predominantly viscous behavior rather than an elastic behavior, but the melt elasticity increased with increasing TPEE content. When the blends crystallized from the melt, the PTT component could form spherulites but their morphology was imperfect with a small size. The blends had larger storage moduli at low temperatures than that of pure PTT.
ISSN:0022-2348
1525-609X
DOI:10.1080/00222348.2014.939525