Loading…
SPC Monitoring of MMSE- and Pi-Controlled Processes
To reduce variation in manufacturing processes, traditional statistical process control (SPC) techniques can be applied to monitor automatic process control (APC) controlled processes for detecting assignable cause process variation. In this paper we compare the monitoring of process output and the...
Saved in:
Published in: | Journal of quality technology 2002-10, Vol.34 (4), p.384-398 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c370t-5af477e5981c07574fff196f6c7e44f182975dd5ba92c61c54863bb9ad5876623 |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-5af477e5981c07574fff196f6c7e44f182975dd5ba92c61c54863bb9ad5876623 |
container_end_page | 398 |
container_issue | 4 |
container_start_page | 384 |
container_title | Journal of quality technology |
container_volume | 34 |
creator | Jiang, Wei Tsui, Kwok-Leung |
description | To reduce variation in manufacturing processes, traditional statistical process control (SPC) techniques can be applied to monitor automatic process control (APC) controlled processes for detecting assignable cause process variation. In this paper we compare the monitoring of process output and the monitoring of the control action of Minimum-Mean-Squared-Error- and Proportional-Integral-Controlled processes. We show that the robustness property of the PI controller makes it difficult to detect unanticipated mean shifts when the process output is being monitored. We illustrate how the signal-to-noise ratios developed in Jiang, Tsui, and Woodall (2000) can be used to predict the SPC chart performance and help select the appropriate chart for monitoring. |
doi_str_mv | 10.1080/00224065.2002.11980171 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00224065_2002_11980171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>209112471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-5af477e5981c07574fff196f6c7e44f182975dd5ba92c61c54863bb9ad5876623</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QRYvnrZOvrPHUuoHWCxUzyHNJrJlm9Rki_Tfu0vtxYunmYHnfRkehG4xTDAoeAAghIHgE9JvE4wrBVjiMzQiXPJSEArnaDRA5UBdoqucNwCYgGIjRFfLWbGIoeliasJnEX2xWKzmZWFCXSybchZDl2Lbuv5K0bqcXb5GF9602d38zjH6eJy_z57L17enl9n0tbRUQldy45mUjlcKW5BcMu89roQXVjrGPFakkryu-dpUxApsOVOCrteVqbmSov97jO6PvbsUv_Yud3rbZOva1gQX91lLRpmgHGhP3v0hN3GfQv-cJpgxRZRgPSSOkE0x5-S83qVma9JBY9CDSX0yqQeT-mSyD06PwSb4mLbmO6a21p05tDH5ZIJtsqb_dPwARmV2zA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214482864</pqid></control><display><type>article</type><title>SPC Monitoring of MMSE- and Pi-Controlled Processes</title><source>ABI/INFORM Collection</source><source>Taylor and Francis Science and Technology Collection</source><creator>Jiang, Wei ; Tsui, Kwok-Leung</creator><creatorcontrib>Jiang, Wei ; Tsui, Kwok-Leung</creatorcontrib><description>To reduce variation in manufacturing processes, traditional statistical process control (SPC) techniques can be applied to monitor automatic process control (APC) controlled processes for detecting assignable cause process variation. In this paper we compare the monitoring of process output and the monitoring of the control action of Minimum-Mean-Squared-Error- and Proportional-Integral-Controlled processes. We show that the robustness property of the PI controller makes it difficult to detect unanticipated mean shifts when the process output is being monitored. We illustrate how the signal-to-noise ratios developed in Jiang, Tsui, and Woodall (2000) can be used to predict the SPC chart performance and help select the appropriate chart for monitoring.</description><identifier>ISSN: 0022-4065</identifier><identifier>EISSN: 2575-6230</identifier><identifier>DOI: 10.1080/00224065.2002.11980171</identifier><identifier>CODEN: JQUTAU</identifier><language>eng</language><publisher>Milwaukee: Taylor & Francis</publisher><subject>Autoregressive Moving Average Process ; Comparative analysis ; Control charts ; Controllers ; Noise ; Process controls ; Quality Control ; Ratios ; Regression analysis ; Statistical Process Control ; Studies</subject><ispartof>Journal of quality technology, 2002-10, Vol.34 (4), p.384-398</ispartof><rights>Copyright 2002 ASQ 2002</rights><rights>Copyright American Society for Quality Oct 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-5af477e5981c07574fff196f6c7e44f182975dd5ba92c61c54863bb9ad5876623</citedby><cites>FETCH-LOGICAL-c370t-5af477e5981c07574fff196f6c7e44f182975dd5ba92c61c54863bb9ad5876623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/214482864/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/214482864?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74767</link.rule.ids></links><search><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Tsui, Kwok-Leung</creatorcontrib><title>SPC Monitoring of MMSE- and Pi-Controlled Processes</title><title>Journal of quality technology</title><description>To reduce variation in manufacturing processes, traditional statistical process control (SPC) techniques can be applied to monitor automatic process control (APC) controlled processes for detecting assignable cause process variation. In this paper we compare the monitoring of process output and the monitoring of the control action of Minimum-Mean-Squared-Error- and Proportional-Integral-Controlled processes. We show that the robustness property of the PI controller makes it difficult to detect unanticipated mean shifts when the process output is being monitored. We illustrate how the signal-to-noise ratios developed in Jiang, Tsui, and Woodall (2000) can be used to predict the SPC chart performance and help select the appropriate chart for monitoring.</description><subject>Autoregressive Moving Average Process</subject><subject>Comparative analysis</subject><subject>Control charts</subject><subject>Controllers</subject><subject>Noise</subject><subject>Process controls</subject><subject>Quality Control</subject><subject>Ratios</subject><subject>Regression analysis</subject><subject>Statistical Process Control</subject><subject>Studies</subject><issn>0022-4065</issn><issn>2575-6230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqFkE1LAzEQhoMoWKt_QRYvnrZOvrPHUuoHWCxUzyHNJrJlm9Rki_Tfu0vtxYunmYHnfRkehG4xTDAoeAAghIHgE9JvE4wrBVjiMzQiXPJSEArnaDRA5UBdoqucNwCYgGIjRFfLWbGIoeliasJnEX2xWKzmZWFCXSybchZDl2Lbuv5K0bqcXb5GF9602d38zjH6eJy_z57L17enl9n0tbRUQldy45mUjlcKW5BcMu89roQXVjrGPFakkryu-dpUxApsOVOCrteVqbmSov97jO6PvbsUv_Yud3rbZOva1gQX91lLRpmgHGhP3v0hN3GfQv-cJpgxRZRgPSSOkE0x5-S83qVma9JBY9CDSX0yqQeT-mSyD06PwSb4mLbmO6a21p05tDH5ZIJtsqb_dPwARmV2zA</recordid><startdate>20021001</startdate><enddate>20021001</enddate><creator>Jiang, Wei</creator><creator>Tsui, Kwok-Leung</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20021001</creationdate><title>SPC Monitoring of MMSE- and Pi-Controlled Processes</title><author>Jiang, Wei ; Tsui, Kwok-Leung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-5af477e5981c07574fff196f6c7e44f182975dd5ba92c61c54863bb9ad5876623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Autoregressive Moving Average Process</topic><topic>Comparative analysis</topic><topic>Control charts</topic><topic>Controllers</topic><topic>Noise</topic><topic>Process controls</topic><topic>Quality Control</topic><topic>Ratios</topic><topic>Regression analysis</topic><topic>Statistical Process Control</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wei</creatorcontrib><creatorcontrib>Tsui, Kwok-Leung</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of quality technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wei</au><au>Tsui, Kwok-Leung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SPC Monitoring of MMSE- and Pi-Controlled Processes</atitle><jtitle>Journal of quality technology</jtitle><date>2002-10-01</date><risdate>2002</risdate><volume>34</volume><issue>4</issue><spage>384</spage><epage>398</epage><pages>384-398</pages><issn>0022-4065</issn><eissn>2575-6230</eissn><coden>JQUTAU</coden><abstract>To reduce variation in manufacturing processes, traditional statistical process control (SPC) techniques can be applied to monitor automatic process control (APC) controlled processes for detecting assignable cause process variation. In this paper we compare the monitoring of process output and the monitoring of the control action of Minimum-Mean-Squared-Error- and Proportional-Integral-Controlled processes. We show that the robustness property of the PI controller makes it difficult to detect unanticipated mean shifts when the process output is being monitored. We illustrate how the signal-to-noise ratios developed in Jiang, Tsui, and Woodall (2000) can be used to predict the SPC chart performance and help select the appropriate chart for monitoring.</abstract><cop>Milwaukee</cop><pub>Taylor & Francis</pub><doi>10.1080/00224065.2002.11980171</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-4065 |
ispartof | Journal of quality technology, 2002-10, Vol.34 (4), p.384-398 |
issn | 0022-4065 2575-6230 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00224065_2002_11980171 |
source | ABI/INFORM Collection; Taylor and Francis Science and Technology Collection |
subjects | Autoregressive Moving Average Process Comparative analysis Control charts Controllers Noise Process controls Quality Control Ratios Regression analysis Statistical Process Control Studies |
title | SPC Monitoring of MMSE- and Pi-Controlled Processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SPC%20Monitoring%20of%20MMSE-%20and%20Pi-Controlled%20Processes&rft.jtitle=Journal%20of%20quality%20technology&rft.au=Jiang,%20Wei&rft.date=2002-10-01&rft.volume=34&rft.issue=4&rft.spage=384&rft.epage=398&rft.pages=384-398&rft.issn=0022-4065&rft.eissn=2575-6230&rft.coden=JQUTAU&rft_id=info:doi/10.1080/00224065.2002.11980171&rft_dat=%3Cproquest_cross%3E209112471%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-5af477e5981c07574fff196f6c7e44f182975dd5ba92c61c54863bb9ad5876623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214482864&rft_id=info:pmid/&rfr_iscdi=true |