Loading…
Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives
Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of compl...
Saved in:
Published in: | Molecular physics 2019-04, Vol.117 (7-8), p.832-848 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533 |
---|---|
cites | cdi_FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533 |
container_end_page | 848 |
container_issue | 7-8 |
container_start_page | 832 |
container_title | Molecular physics |
container_volume | 117 |
creator | Bödenler, Markus de Rochefort, Ludovic Ross, P. James Chanet, Nicolas Guillot, Geneviève Davies, Gareth R. Gösweiner, Christian Scharfetter, Hermann Lurie, David J. Broche, Lionel M. |
description | Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents. |
doi_str_mv | 10.1080/00268976.2018.1557349 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00268976_2018_1557349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200625612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78BCHgyUPXSdKk6U1Z1BUWvOjJQ0jTRCPdpiZdZf-9qasePQ3MPO_L8CB0RmBOQMIlABWyrsScApFzwnnFynoPzQgTtGBA5T6aTUwxQYfoKKU3ABBAYIaeF2E96OhT6HFw2Ok0Yudt1xZmazrfv-C1funt6A2ONkO6Nxb7vPs-2fE1tAnrvsVuM26ixYONabBm9B82naADp7tkT3_mMXq6vXlcLIvVw9394npVmJLUY1E1tHICarANbSohGsqdbGpZ0rKmXOuaQc3bsgXNykxRwQmxzHBpSis5Z-wYXex6X3Wnhpi_i1sVtFfL65WadkAJF5KTD5LZ8x07xPC-sWlUb2ET-_yeojRLoVwQmim-o0wMKUXr_moJqMm5-nWuJufqx3nOXe1yvnchrvVniF2rRr3tQnQxu_NJsf8rvgBkxYbr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200625612</pqid></control><display><type>article</type><title>Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Bödenler, Markus ; de Rochefort, Ludovic ; Ross, P. James ; Chanet, Nicolas ; Guillot, Geneviève ; Davies, Gareth R. ; Gösweiner, Christian ; Scharfetter, Hermann ; Lurie, David J. ; Broche, Lionel M.</creator><creatorcontrib>Bödenler, Markus ; de Rochefort, Ludovic ; Ross, P. James ; Chanet, Nicolas ; Guillot, Geneviève ; Davies, Gareth R. ; Gösweiner, Christian ; Scharfetter, Hermann ; Lurie, David J. ; Broche, Lionel M.</creatorcontrib><description>Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents.</description><identifier>ISSN: 0026-8976</identifier><identifier>EISSN: 1362-3028</identifier><identifier>DOI: 10.1080/00268976.2018.1557349</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Biological properties ; Complex systems ; Contrast agents ; Cycles ; delta relaxation enhanced MR ; Dispersion ; Eddy currents ; Engineering Sciences ; Error correction ; FFC-MRI ; Field strength ; Field-cycling ; Image contrast ; Life Sciences ; Magnetic induction ; Magnetic relaxation ; Magnetic resonance imaging ; Medical imaging ; Molecular dynamics ; NMR ; NMRD ; Nuclear magnetic resonance ; Physics ; Tissues</subject><ispartof>Molecular physics, 2019-04, Vol.117 (7-8), p.832-848</ispartof><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2018</rights><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533</citedby><cites>FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533</cites><orcidid>0000-0003-4453-9385 ; 0000-0001-7466-6452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02156851$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bödenler, Markus</creatorcontrib><creatorcontrib>de Rochefort, Ludovic</creatorcontrib><creatorcontrib>Ross, P. James</creatorcontrib><creatorcontrib>Chanet, Nicolas</creatorcontrib><creatorcontrib>Guillot, Geneviève</creatorcontrib><creatorcontrib>Davies, Gareth R.</creatorcontrib><creatorcontrib>Gösweiner, Christian</creatorcontrib><creatorcontrib>Scharfetter, Hermann</creatorcontrib><creatorcontrib>Lurie, David J.</creatorcontrib><creatorcontrib>Broche, Lionel M.</creatorcontrib><title>Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives</title><title>Molecular physics</title><description>Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents.</description><subject>Biological properties</subject><subject>Complex systems</subject><subject>Contrast agents</subject><subject>Cycles</subject><subject>delta relaxation enhanced MR</subject><subject>Dispersion</subject><subject>Eddy currents</subject><subject>Engineering Sciences</subject><subject>Error correction</subject><subject>FFC-MRI</subject><subject>Field strength</subject><subject>Field-cycling</subject><subject>Image contrast</subject><subject>Life Sciences</subject><subject>Magnetic induction</subject><subject>Magnetic relaxation</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>NMRD</subject><subject>Nuclear magnetic resonance</subject><subject>Physics</subject><subject>Tissues</subject><issn>0026-8976</issn><issn>1362-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kE1LxDAQhoMouH78BCHgyUPXSdKk6U1Z1BUWvOjJQ0jTRCPdpiZdZf-9qasePQ3MPO_L8CB0RmBOQMIlABWyrsScApFzwnnFynoPzQgTtGBA5T6aTUwxQYfoKKU3ABBAYIaeF2E96OhT6HFw2Ok0Yudt1xZmazrfv-C1funt6A2ONkO6Nxb7vPs-2fE1tAnrvsVuM26ixYONabBm9B82naADp7tkT3_mMXq6vXlcLIvVw9394npVmJLUY1E1tHICarANbSohGsqdbGpZ0rKmXOuaQc3bsgXNykxRwQmxzHBpSis5Z-wYXex6X3Wnhpi_i1sVtFfL65WadkAJF5KTD5LZ8x07xPC-sWlUb2ET-_yeojRLoVwQmim-o0wMKUXr_moJqMm5-nWuJufqx3nOXe1yvnchrvVniF2rRr3tQnQxu_NJsf8rvgBkxYbr</recordid><startdate>20190418</startdate><enddate>20190418</enddate><creator>Bödenler, Markus</creator><creator>de Rochefort, Ludovic</creator><creator>Ross, P. James</creator><creator>Chanet, Nicolas</creator><creator>Guillot, Geneviève</creator><creator>Davies, Gareth R.</creator><creator>Gösweiner, Christian</creator><creator>Scharfetter, Hermann</creator><creator>Lurie, David J.</creator><creator>Broche, Lionel M.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4453-9385</orcidid><orcidid>https://orcid.org/0000-0001-7466-6452</orcidid></search><sort><creationdate>20190418</creationdate><title>Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives</title><author>Bödenler, Markus ; de Rochefort, Ludovic ; Ross, P. James ; Chanet, Nicolas ; Guillot, Geneviève ; Davies, Gareth R. ; Gösweiner, Christian ; Scharfetter, Hermann ; Lurie, David J. ; Broche, Lionel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological properties</topic><topic>Complex systems</topic><topic>Contrast agents</topic><topic>Cycles</topic><topic>delta relaxation enhanced MR</topic><topic>Dispersion</topic><topic>Eddy currents</topic><topic>Engineering Sciences</topic><topic>Error correction</topic><topic>FFC-MRI</topic><topic>Field strength</topic><topic>Field-cycling</topic><topic>Image contrast</topic><topic>Life Sciences</topic><topic>Magnetic induction</topic><topic>Magnetic relaxation</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>NMRD</topic><topic>Nuclear magnetic resonance</topic><topic>Physics</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bödenler, Markus</creatorcontrib><creatorcontrib>de Rochefort, Ludovic</creatorcontrib><creatorcontrib>Ross, P. James</creatorcontrib><creatorcontrib>Chanet, Nicolas</creatorcontrib><creatorcontrib>Guillot, Geneviève</creatorcontrib><creatorcontrib>Davies, Gareth R.</creatorcontrib><creatorcontrib>Gösweiner, Christian</creatorcontrib><creatorcontrib>Scharfetter, Hermann</creatorcontrib><creatorcontrib>Lurie, David J.</creatorcontrib><creatorcontrib>Broche, Lionel M.</creatorcontrib><collection>Taylor & Francis Open Access Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bödenler, Markus</au><au>de Rochefort, Ludovic</au><au>Ross, P. James</au><au>Chanet, Nicolas</au><au>Guillot, Geneviève</au><au>Davies, Gareth R.</au><au>Gösweiner, Christian</au><au>Scharfetter, Hermann</au><au>Lurie, David J.</au><au>Broche, Lionel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives</atitle><jtitle>Molecular physics</jtitle><date>2019-04-18</date><risdate>2019</risdate><volume>117</volume><issue>7-8</issue><spage>832</spage><epage>848</epage><pages>832-848</pages><issn>0026-8976</issn><eissn>1362-3028</eissn><abstract>Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00268976.2018.1557349</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4453-9385</orcidid><orcidid>https://orcid.org/0000-0001-7466-6452</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-8976 |
ispartof | Molecular physics, 2019-04, Vol.117 (7-8), p.832-848 |
issn | 0026-8976 1362-3028 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00268976_2018_1557349 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | Biological properties Complex systems Contrast agents Cycles delta relaxation enhanced MR Dispersion Eddy currents Engineering Sciences Error correction FFC-MRI Field strength Field-cycling Image contrast Life Sciences Magnetic induction Magnetic relaxation Magnetic resonance imaging Medical imaging Molecular dynamics NMR NMRD Nuclear magnetic resonance Physics Tissues |
title | Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20fast%20field-cycling%20magnetic%20resonance%20imaging%20methods%20and%20future%20perspectives&rft.jtitle=Molecular%20physics&rft.au=B%C3%B6denler,%20Markus&rft.date=2019-04-18&rft.volume=117&rft.issue=7-8&rft.spage=832&rft.epage=848&rft.pages=832-848&rft.issn=0026-8976&rft.eissn=1362-3028&rft_id=info:doi/10.1080/00268976.2018.1557349&rft_dat=%3Cproquest_cross%3E2200625612%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2200625612&rft_id=info:pmid/&rfr_iscdi=true |