Loading…

Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives

Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of compl...

Full description

Saved in:
Bibliographic Details
Published in:Molecular physics 2019-04, Vol.117 (7-8), p.832-848
Main Authors: Bödenler, Markus, de Rochefort, Ludovic, Ross, P. James, Chanet, Nicolas, Guillot, Geneviève, Davies, Gareth R., Gösweiner, Christian, Scharfetter, Hermann, Lurie, David J., Broche, Lionel M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533
cites cdi_FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533
container_end_page 848
container_issue 7-8
container_start_page 832
container_title Molecular physics
container_volume 117
creator Bödenler, Markus
de Rochefort, Ludovic
Ross, P. James
Chanet, Nicolas
Guillot, Geneviève
Davies, Gareth R.
Gösweiner, Christian
Scharfetter, Hermann
Lurie, David J.
Broche, Lionel M.
description Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents.
doi_str_mv 10.1080/00268976.2018.1557349
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00268976_2018_1557349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2200625612</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78BCHgyUPXSdKk6U1Z1BUWvOjJQ0jTRCPdpiZdZf-9qasePQ3MPO_L8CB0RmBOQMIlABWyrsScApFzwnnFynoPzQgTtGBA5T6aTUwxQYfoKKU3ABBAYIaeF2E96OhT6HFw2Ok0Yudt1xZmazrfv-C1funt6A2ONkO6Nxb7vPs-2fE1tAnrvsVuM26ixYONabBm9B82naADp7tkT3_mMXq6vXlcLIvVw9394npVmJLUY1E1tHICarANbSohGsqdbGpZ0rKmXOuaQc3bsgXNykxRwQmxzHBpSis5Z-wYXex6X3Wnhpi_i1sVtFfL65WadkAJF5KTD5LZ8x07xPC-sWlUb2ET-_yeojRLoVwQmim-o0wMKUXr_moJqMm5-nWuJufqx3nOXe1yvnchrvVniF2rRr3tQnQxu_NJsf8rvgBkxYbr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2200625612</pqid></control><display><type>article</type><title>Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Bödenler, Markus ; de Rochefort, Ludovic ; Ross, P. James ; Chanet, Nicolas ; Guillot, Geneviève ; Davies, Gareth R. ; Gösweiner, Christian ; Scharfetter, Hermann ; Lurie, David J. ; Broche, Lionel M.</creator><creatorcontrib>Bödenler, Markus ; de Rochefort, Ludovic ; Ross, P. James ; Chanet, Nicolas ; Guillot, Geneviève ; Davies, Gareth R. ; Gösweiner, Christian ; Scharfetter, Hermann ; Lurie, David J. ; Broche, Lionel M.</creatorcontrib><description>Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents.</description><identifier>ISSN: 0026-8976</identifier><identifier>EISSN: 1362-3028</identifier><identifier>DOI: 10.1080/00268976.2018.1557349</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Biological properties ; Complex systems ; Contrast agents ; Cycles ; delta relaxation enhanced MR ; Dispersion ; Eddy currents ; Engineering Sciences ; Error correction ; FFC-MRI ; Field strength ; Field-cycling ; Image contrast ; Life Sciences ; Magnetic induction ; Magnetic relaxation ; Magnetic resonance imaging ; Medical imaging ; Molecular dynamics ; NMR ; NMRD ; Nuclear magnetic resonance ; Physics ; Tissues</subject><ispartof>Molecular physics, 2019-04, Vol.117 (7-8), p.832-848</ispartof><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533</citedby><cites>FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533</cites><orcidid>0000-0003-4453-9385 ; 0000-0001-7466-6452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02156851$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bödenler, Markus</creatorcontrib><creatorcontrib>de Rochefort, Ludovic</creatorcontrib><creatorcontrib>Ross, P. James</creatorcontrib><creatorcontrib>Chanet, Nicolas</creatorcontrib><creatorcontrib>Guillot, Geneviève</creatorcontrib><creatorcontrib>Davies, Gareth R.</creatorcontrib><creatorcontrib>Gösweiner, Christian</creatorcontrib><creatorcontrib>Scharfetter, Hermann</creatorcontrib><creatorcontrib>Lurie, David J.</creatorcontrib><creatorcontrib>Broche, Lionel M.</creatorcontrib><title>Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives</title><title>Molecular physics</title><description>Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents.</description><subject>Biological properties</subject><subject>Complex systems</subject><subject>Contrast agents</subject><subject>Cycles</subject><subject>delta relaxation enhanced MR</subject><subject>Dispersion</subject><subject>Eddy currents</subject><subject>Engineering Sciences</subject><subject>Error correction</subject><subject>FFC-MRI</subject><subject>Field strength</subject><subject>Field-cycling</subject><subject>Image contrast</subject><subject>Life Sciences</subject><subject>Magnetic induction</subject><subject>Magnetic relaxation</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Molecular dynamics</subject><subject>NMR</subject><subject>NMRD</subject><subject>Nuclear magnetic resonance</subject><subject>Physics</subject><subject>Tissues</subject><issn>0026-8976</issn><issn>1362-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kE1LxDAQhoMouH78BCHgyUPXSdKk6U1Z1BUWvOjJQ0jTRCPdpiZdZf-9qasePQ3MPO_L8CB0RmBOQMIlABWyrsScApFzwnnFynoPzQgTtGBA5T6aTUwxQYfoKKU3ABBAYIaeF2E96OhT6HFw2Ok0Yudt1xZmazrfv-C1funt6A2ONkO6Nxb7vPs-2fE1tAnrvsVuM26ixYONabBm9B82naADp7tkT3_mMXq6vXlcLIvVw9394npVmJLUY1E1tHICarANbSohGsqdbGpZ0rKmXOuaQc3bsgXNykxRwQmxzHBpSis5Z-wYXex6X3Wnhpi_i1sVtFfL65WadkAJF5KTD5LZ8x07xPC-sWlUb2ET-_yeojRLoVwQmim-o0wMKUXr_moJqMm5-nWuJufqx3nOXe1yvnchrvVniF2rRr3tQnQxu_NJsf8rvgBkxYbr</recordid><startdate>20190418</startdate><enddate>20190418</enddate><creator>Bödenler, Markus</creator><creator>de Rochefort, Ludovic</creator><creator>Ross, P. James</creator><creator>Chanet, Nicolas</creator><creator>Guillot, Geneviève</creator><creator>Davies, Gareth R.</creator><creator>Gösweiner, Christian</creator><creator>Scharfetter, Hermann</creator><creator>Lurie, David J.</creator><creator>Broche, Lionel M.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4453-9385</orcidid><orcidid>https://orcid.org/0000-0001-7466-6452</orcidid></search><sort><creationdate>20190418</creationdate><title>Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives</title><author>Bödenler, Markus ; de Rochefort, Ludovic ; Ross, P. James ; Chanet, Nicolas ; Guillot, Geneviève ; Davies, Gareth R. ; Gösweiner, Christian ; Scharfetter, Hermann ; Lurie, David J. ; Broche, Lionel M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biological properties</topic><topic>Complex systems</topic><topic>Contrast agents</topic><topic>Cycles</topic><topic>delta relaxation enhanced MR</topic><topic>Dispersion</topic><topic>Eddy currents</topic><topic>Engineering Sciences</topic><topic>Error correction</topic><topic>FFC-MRI</topic><topic>Field strength</topic><topic>Field-cycling</topic><topic>Image contrast</topic><topic>Life Sciences</topic><topic>Magnetic induction</topic><topic>Magnetic relaxation</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Molecular dynamics</topic><topic>NMR</topic><topic>NMRD</topic><topic>Nuclear magnetic resonance</topic><topic>Physics</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bödenler, Markus</creatorcontrib><creatorcontrib>de Rochefort, Ludovic</creatorcontrib><creatorcontrib>Ross, P. James</creatorcontrib><creatorcontrib>Chanet, Nicolas</creatorcontrib><creatorcontrib>Guillot, Geneviève</creatorcontrib><creatorcontrib>Davies, Gareth R.</creatorcontrib><creatorcontrib>Gösweiner, Christian</creatorcontrib><creatorcontrib>Scharfetter, Hermann</creatorcontrib><creatorcontrib>Lurie, David J.</creatorcontrib><creatorcontrib>Broche, Lionel M.</creatorcontrib><collection>Taylor &amp; Francis Open Access Journals</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Molecular physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bödenler, Markus</au><au>de Rochefort, Ludovic</au><au>Ross, P. James</au><au>Chanet, Nicolas</au><au>Guillot, Geneviève</au><au>Davies, Gareth R.</au><au>Gösweiner, Christian</au><au>Scharfetter, Hermann</au><au>Lurie, David J.</au><au>Broche, Lionel M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives</atitle><jtitle>Molecular physics</jtitle><date>2019-04-18</date><risdate>2019</risdate><volume>117</volume><issue>7-8</issue><spage>832</spage><epage>848</epage><pages>832-848</pages><issn>0026-8976</issn><eissn>1362-3028</eissn><abstract>Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00268976.2018.1557349</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-4453-9385</orcidid><orcidid>https://orcid.org/0000-0001-7466-6452</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0026-8976
ispartof Molecular physics, 2019-04, Vol.117 (7-8), p.832-848
issn 0026-8976
1362-3028
language eng
recordid cdi_crossref_primary_10_1080_00268976_2018_1557349
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects Biological properties
Complex systems
Contrast agents
Cycles
delta relaxation enhanced MR
Dispersion
Eddy currents
Engineering Sciences
Error correction
FFC-MRI
Field strength
Field-cycling
Image contrast
Life Sciences
Magnetic induction
Magnetic relaxation
Magnetic resonance imaging
Medical imaging
Molecular dynamics
NMR
NMRD
Nuclear magnetic resonance
Physics
Tissues
title Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A38%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20fast%20field-cycling%20magnetic%20resonance%20imaging%20methods%20and%20future%20perspectives&rft.jtitle=Molecular%20physics&rft.au=B%C3%B6denler,%20Markus&rft.date=2019-04-18&rft.volume=117&rft.issue=7-8&rft.spage=832&rft.epage=848&rft.pages=832-848&rft.issn=0026-8976&rft.eissn=1362-3028&rft_id=info:doi/10.1080/00268976.2018.1557349&rft_dat=%3Cproquest_cross%3E2200625612%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-7b27f6090eb2b766b25f8b98424925aa93095d4d0a3409026511e3c58c4e85533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2200625612&rft_id=info:pmid/&rfr_iscdi=true