Loading…
Cross-Validatory Choice of the Number of Components From a Principal Component Analysis
A method is described for choosing the number of components to retain in a principal component analysis when the aim is dimensionality reduction. The correspondence between principal component analysis and the singular value decomposition of the data matrix is used. The method is based on successive...
Saved in:
Published in: | Technometrics 1982-02, Vol.24 (1), p.73-77 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-75938029a96bf27f8ed1d843f8a57be8607cfd4db762af0a4622c881de57ad3f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-75938029a96bf27f8ed1d843f8a57be8607cfd4db762af0a4622c881de57ad3f3 |
container_end_page | 77 |
container_issue | 1 |
container_start_page | 73 |
container_title | Technometrics |
container_volume | 24 |
creator | Eastment, H. T. Krzanowski, W. J. |
description | A method is described for choosing the number of components to retain in a principal component analysis when the aim is dimensionality reduction. The correspondence between principal component analysis and the singular value decomposition of the data matrix is used. The method is based on successively predicting each element in the data matrix after deleting the corresponding row and column of the matrix, and makes use of recently published algorithms for updating a singular value decomposition. These are very fast, which renders the proposed technique a practicable one for routine data analysis. |
doi_str_mv | 10.1080/00401706.1982.10487712 |
format | article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00401706_1982_10487712</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>1267581</jstor_id><sourcerecordid>1267581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-75938029a96bf27f8ed1d843f8a57be8607cfd4db762af0a4622c881de57ad3f3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BcnBa9d8tEl6XIqrwqIe_DiGaZOwXdpmSSrSf29LXfTmaZiZ553hfRG6pmRFiSK3hKSESiJWNFdsHKVKSspO0IJmXCZMMn6KFhOUTNQ5uohxTwjlTMkF-iiCjzF5h6Y20Psw4GLn68pi73C_s_jpsy1tmLrCtwff2a6PeBN8iwG_hLqr6gM0vzu87qAZYh0v0ZmDJtqrn7pEb5u71-Ih2T7fPxbrbVJxRvtEZjlXhOWQi9Ix6ZQ11KiUOwWZLK0SRFbOpKaUgoEjkArGKqWosZkEwx1fIjHfrSYfwTp9CHULYdCU6CkefYxHT_HoYzyj8GYW7uNo-6-KcSI1ZUJmio7YesbqzvnQwpcPjdE9DI0PLsDoP2r-z6tvdsd4OA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cross-Validatory Choice of the Number of Components From a Principal Component Analysis</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Eastment, H. T. ; Krzanowski, W. J.</creator><creatorcontrib>Eastment, H. T. ; Krzanowski, W. J.</creatorcontrib><description>A method is described for choosing the number of components to retain in a principal component analysis when the aim is dimensionality reduction. The correspondence between principal component analysis and the singular value decomposition of the data matrix is used. The method is based on successively predicting each element in the data matrix after deleting the corresponding row and column of the matrix, and makes use of recently published algorithms for updating a singular value decomposition. These are very fast, which renders the proposed technique a practicable one for routine data analysis.</description><identifier>ISSN: 0040-1706</identifier><identifier>EISSN: 1537-2723</identifier><identifier>DOI: 10.1080/00401706.1982.10487712</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Coordinate systems ; Correlations ; Covariance matrices ; Cross-validation ; Datasets ; Dimensionality reduction ; Eigenvalues ; Eigenvectors ; Matrices ; Modeling ; Principal component analysis ; Principal components analysis ; Reduction of dimensionality ; Singular value decomposition</subject><ispartof>Technometrics, 1982-02, Vol.24 (1), p.73-77</ispartof><rights>Copyright Taylor & Francis Group, LLC 1982</rights><rights>Copyright 1982 The American Statistical Association and the American Society for Quality Control</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-75938029a96bf27f8ed1d843f8a57be8607cfd4db762af0a4622c881de57ad3f3</citedby><cites>FETCH-LOGICAL-c321t-75938029a96bf27f8ed1d843f8a57be8607cfd4db762af0a4622c881de57ad3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/1267581$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/1267581$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Eastment, H. T.</creatorcontrib><creatorcontrib>Krzanowski, W. J.</creatorcontrib><title>Cross-Validatory Choice of the Number of Components From a Principal Component Analysis</title><title>Technometrics</title><description>A method is described for choosing the number of components to retain in a principal component analysis when the aim is dimensionality reduction. The correspondence between principal component analysis and the singular value decomposition of the data matrix is used. The method is based on successively predicting each element in the data matrix after deleting the corresponding row and column of the matrix, and makes use of recently published algorithms for updating a singular value decomposition. These are very fast, which renders the proposed technique a practicable one for routine data analysis.</description><subject>Coordinate systems</subject><subject>Correlations</subject><subject>Covariance matrices</subject><subject>Cross-validation</subject><subject>Datasets</subject><subject>Dimensionality reduction</subject><subject>Eigenvalues</subject><subject>Eigenvectors</subject><subject>Matrices</subject><subject>Modeling</subject><subject>Principal component analysis</subject><subject>Principal components analysis</subject><subject>Reduction of dimensionality</subject><subject>Singular value decomposition</subject><issn>0040-1706</issn><issn>1537-2723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1982</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BcnBa9d8tEl6XIqrwqIe_DiGaZOwXdpmSSrSf29LXfTmaZiZ553hfRG6pmRFiSK3hKSESiJWNFdsHKVKSspO0IJmXCZMMn6KFhOUTNQ5uohxTwjlTMkF-iiCjzF5h6Y20Psw4GLn68pi73C_s_jpsy1tmLrCtwff2a6PeBN8iwG_hLqr6gM0vzu87qAZYh0v0ZmDJtqrn7pEb5u71-Ih2T7fPxbrbVJxRvtEZjlXhOWQi9Ix6ZQ11KiUOwWZLK0SRFbOpKaUgoEjkArGKqWosZkEwx1fIjHfrSYfwTp9CHULYdCU6CkefYxHT_HoYzyj8GYW7uNo-6-KcSI1ZUJmio7YesbqzvnQwpcPjdE9DI0PLsDoP2r-z6tvdsd4OA</recordid><startdate>19820201</startdate><enddate>19820201</enddate><creator>Eastment, H. T.</creator><creator>Krzanowski, W. J.</creator><general>Taylor & Francis Group</general><general>The American Society for Quality Control and The American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19820201</creationdate><title>Cross-Validatory Choice of the Number of Components From a Principal Component Analysis</title><author>Eastment, H. T. ; Krzanowski, W. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-75938029a96bf27f8ed1d843f8a57be8607cfd4db762af0a4622c881de57ad3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1982</creationdate><topic>Coordinate systems</topic><topic>Correlations</topic><topic>Covariance matrices</topic><topic>Cross-validation</topic><topic>Datasets</topic><topic>Dimensionality reduction</topic><topic>Eigenvalues</topic><topic>Eigenvectors</topic><topic>Matrices</topic><topic>Modeling</topic><topic>Principal component analysis</topic><topic>Principal components analysis</topic><topic>Reduction of dimensionality</topic><topic>Singular value decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eastment, H. T.</creatorcontrib><creatorcontrib>Krzanowski, W. J.</creatorcontrib><collection>CrossRef</collection><jtitle>Technometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eastment, H. T.</au><au>Krzanowski, W. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-Validatory Choice of the Number of Components From a Principal Component Analysis</atitle><jtitle>Technometrics</jtitle><date>1982-02-01</date><risdate>1982</risdate><volume>24</volume><issue>1</issue><spage>73</spage><epage>77</epage><pages>73-77</pages><issn>0040-1706</issn><eissn>1537-2723</eissn><abstract>A method is described for choosing the number of components to retain in a principal component analysis when the aim is dimensionality reduction. The correspondence between principal component analysis and the singular value decomposition of the data matrix is used. The method is based on successively predicting each element in the data matrix after deleting the corresponding row and column of the matrix, and makes use of recently published algorithms for updating a singular value decomposition. These are very fast, which renders the proposed technique a practicable one for routine data analysis.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/00401706.1982.10487712</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-1706 |
ispartof | Technometrics, 1982-02, Vol.24 (1), p.73-77 |
issn | 0040-1706 1537-2723 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00401706_1982_10487712 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Coordinate systems Correlations Covariance matrices Cross-validation Datasets Dimensionality reduction Eigenvalues Eigenvectors Matrices Modeling Principal component analysis Principal components analysis Reduction of dimensionality Singular value decomposition |
title | Cross-Validatory Choice of the Number of Components From a Principal Component Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-Validatory%20Choice%20of%20the%20Number%20of%20Components%20From%20a%20Principal%20Component%20Analysis&rft.jtitle=Technometrics&rft.au=Eastment,%20H.%20T.&rft.date=1982-02-01&rft.volume=24&rft.issue=1&rft.spage=73&rft.epage=77&rft.pages=73-77&rft.issn=0040-1706&rft.eissn=1537-2723&rft_id=info:doi/10.1080/00401706.1982.10487712&rft_dat=%3Cjstor_cross%3E1267581%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-75938029a96bf27f8ed1d843f8a57be8607cfd4db762af0a4622c881de57ad3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=1267581&rfr_iscdi=true |