Loading…

Development of an efficient family size solar dryer

Since the air heater is the most important component in a solar food drying system, improving its performance is desirable, especially when the space available for the dryer is limited and its cost is to be kept as low as possible. The solar system considered is the forced convection type, in which...

Full description

Saved in:
Bibliographic Details
Published in:Energy sources 1996, Vol.18 (1), p.85-93
Main Author: Khattab, N.M. (National Research Center, Cairo, Egypt.)
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Since the air heater is the most important component in a solar food drying system, improving its performance is desirable, especially when the space available for the dryer is limited and its cost is to be kept as low as possible. The solar system considered is the forced convection type, in which air is driven inside the heater by using a small suction fan of low power consumption. In this work, two configurations of air heaters were tested to increase heat gain without much increase in size or cost. This could be achieved by elongating the air path through the collector or by using two glass covers, between which the air is allowed to flow before it enters the heater. For both configurations, an inexpensive reflecting surface is used to increase heat input Experimental results show an average increase of daily energy input of 40% and 57% for the first and second heater, respectively. This, in turn, increases the thermal efficiency of both heaters. Although the second type is more efficient than the first, it is accompanied by an increase in power consumption. Tests show that for ratios of temperature rise/insolation up to 0.03, the first type is better from the thermal and economical points of view. However, as this ratio increases, the second type becomes more efficient and economical.
ISSN:0090-8312
1521-0510
DOI:10.1080/00908319608908749