Loading…
Crosslinked Sulfonated Polysulfone-Based Polymer Electrolyte Membranes Induced by Gamma Ray Irradiation
Sulfonated aromatic polymers generally show high swelling at high proton conductivity. This disadvantage makes many of them unfit for proton exchange membrane applications. Crosslinking of the polymer is one way to overcome this problem. In this study, radiation-induced crosslinking was performed on...
Saved in:
Published in: | International journal of polymeric materials 2010-06, Vol.59 (6), p.424-437 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sulfonated aromatic polymers generally show high swelling at high proton conductivity. This disadvantage makes many of them unfit for proton exchange membrane applications. Crosslinking of the polymer is one way to overcome this problem. In this study, radiation-induced crosslinking was performed on a sulfonated polysulfone membrane, with doses ranging from 2.5 to 25.0 kGy (dose rate: 45 Gy/min) using gamma rays from a
60
Co source. The pristine sulfonated polysulfones was obtained by mild sulfonation of bisphenol-A-polysulfone with trimethylsilyl chlorosulfonate as sulfonating agent. The proton conductivity of the membranes was characterized by means of electrical impedance spectroscopy techniques. Ion-exchange capacity, degree of sulfonation, water content and chemical stability membrane properties were characterized before and after irradiation. The results show that the mechanical, chemical and thermal stability of the membrane improve after irradiation. The degree of sulfonation and the proton conductivity exhibit a tendency to decrease with increasing irradiation total dose. |
---|---|
ISSN: | 0091-4037 1563-535X |
DOI: | 10.1080/00914030903538546 |