Loading…
Electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering
Polycaprolactone scaffolds, polycaprolactone/gelatin, and polycaprolactone/gelatin/bioactive glass scaffolds were prepared with ratios of 50/50, 25/75, and 75/25 for polymers and 5 wt% for the bioactive glass via electrospinning and then were characterized using. The results indicated that by adding...
Saved in:
Published in: | International journal of polymeric materials 2019-07, Vol.68 (10), p.607-615 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-472e5fe35c3d849a8941e9f30a011d1af41dd965e67a859e72ae0d38a7163bbf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-472e5fe35c3d849a8941e9f30a011d1af41dd965e67a859e72ae0d38a7163bbf3 |
container_end_page | 615 |
container_issue | 10 |
container_start_page | 607 |
container_title | International journal of polymeric materials |
container_volume | 68 |
creator | Shirani, Keyvan Nourbakhsh, Mohammad Sadegh Rafienia, Mohammad |
description | Polycaprolactone scaffolds, polycaprolactone/gelatin, and polycaprolactone/gelatin/bioactive glass scaffolds were prepared with ratios of 50/50, 25/75, and 75/25 for polymers and 5 wt% for the bioactive glass via electrospinning and then were characterized using. The results indicated that by adding gelatin and bioactive glass to polycaprolactone scaffold, the diameter of fiber decreased from 557 to 167 nm. The results showed growth of apatite layer on the scaffolds after immersion in simulated body fluid for 28 days. The results of mechanical test revealed that by adding bioactive glass to scaffolds, the ultimate tensile strength and Young's modulus increase about two folds. |
doi_str_mv | 10.1080/00914037.2018.1482461 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00914037_2018_1482461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2219854807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-472e5fe35c3d849a8941e9f30a011d1af41dd965e67a859e72ae0d38a7163bbf3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcfQSj43C1pmjZ9U8b8AwNfFHyRcNvelIwsmUmr7Nvbsvnq04XL75x7zyHkltEFo5IuKa1YTnm5yCiTC5bLLC_YGZkxUfBUcPFxTmYTk07QJbmKcUsp40JWM_K5ttj0wcf94JK9t4cG9sFbaHrvcNmhhd64ZW38uDHfmHQWYkwcOB8b0NrbNtE-JPVIJ72JccAEXWccYjCuuyYXGmzEm9Ock_fH9dvqOd28Pr2sHjZpw7ns07zMUGjkouGtzCuQVc6w0pwCZaxloHPWtlUhsChBigrLDJC2XELJCl7Xms_J3dF3_P1rwNirrR-CG0-qLGOVFLmk5UiJI9WMeWNArfbB7CAcFKNqalL9NammJtWpyVF3f9QZN2bdwY8PtlU9HKwPOoBrTFT8f4tfUfB8OQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2219854807</pqid></control><display><type>article</type><title>Electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering</title><source>Taylor and Francis Science and Technology Collection</source><creator>Shirani, Keyvan ; Nourbakhsh, Mohammad Sadegh ; Rafienia, Mohammad</creator><creatorcontrib>Shirani, Keyvan ; Nourbakhsh, Mohammad Sadegh ; Rafienia, Mohammad</creatorcontrib><description>Polycaprolactone scaffolds, polycaprolactone/gelatin, and polycaprolactone/gelatin/bioactive glass scaffolds were prepared with ratios of 50/50, 25/75, and 75/25 for polymers and 5 wt% for the bioactive glass via electrospinning and then were characterized using. The results indicated that by adding gelatin and bioactive glass to polycaprolactone scaffold, the diameter of fiber decreased from 557 to 167 nm. The results showed growth of apatite layer on the scaffolds after immersion in simulated body fluid for 28 days. The results of mechanical test revealed that by adding bioactive glass to scaffolds, the ultimate tensile strength and Young's modulus increase about two folds.</description><identifier>ISSN: 0091-4037</identifier><identifier>EISSN: 1563-535X</identifier><identifier>DOI: 10.1080/00914037.2018.1482461</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Apatite ; Bioactivity ; Biocompatibility ; Bioglass ; Biological activity ; Biomedical materials ; Body fluids ; bone tissue engineering ; degradation behavior ; electrospun scaffold ; Gelatin ; In vitro methods and tests ; mechanical properties ; Mechanical tests ; Modulus of elasticity ; nanocomposite ; Polycaprolactone ; Scaffolds ; Submerging ; Surgical implants ; Tissue engineering ; Ultimate tensile strength</subject><ispartof>International journal of polymeric materials, 2019-07, Vol.68 (10), p.607-615</ispartof><rights>2018 Taylor & Francis 2018</rights><rights>2018 Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-472e5fe35c3d849a8941e9f30a011d1af41dd965e67a859e72ae0d38a7163bbf3</citedby><cites>FETCH-LOGICAL-c338t-472e5fe35c3d849a8941e9f30a011d1af41dd965e67a859e72ae0d38a7163bbf3</cites><orcidid>0000-0002-5252-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shirani, Keyvan</creatorcontrib><creatorcontrib>Nourbakhsh, Mohammad Sadegh</creatorcontrib><creatorcontrib>Rafienia, Mohammad</creatorcontrib><title>Electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering</title><title>International journal of polymeric materials</title><description>Polycaprolactone scaffolds, polycaprolactone/gelatin, and polycaprolactone/gelatin/bioactive glass scaffolds were prepared with ratios of 50/50, 25/75, and 75/25 for polymers and 5 wt% for the bioactive glass via electrospinning and then were characterized using. The results indicated that by adding gelatin and bioactive glass to polycaprolactone scaffold, the diameter of fiber decreased from 557 to 167 nm. The results showed growth of apatite layer on the scaffolds after immersion in simulated body fluid for 28 days. The results of mechanical test revealed that by adding bioactive glass to scaffolds, the ultimate tensile strength and Young's modulus increase about two folds.</description><subject>Apatite</subject><subject>Bioactivity</subject><subject>Biocompatibility</subject><subject>Bioglass</subject><subject>Biological activity</subject><subject>Biomedical materials</subject><subject>Body fluids</subject><subject>bone tissue engineering</subject><subject>degradation behavior</subject><subject>electrospun scaffold</subject><subject>Gelatin</subject><subject>In vitro methods and tests</subject><subject>mechanical properties</subject><subject>Mechanical tests</subject><subject>Modulus of elasticity</subject><subject>nanocomposite</subject><subject>Polycaprolactone</subject><subject>Scaffolds</subject><subject>Submerging</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Ultimate tensile strength</subject><issn>0091-4037</issn><issn>1563-535X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcfQSj43C1pmjZ9U8b8AwNfFHyRcNvelIwsmUmr7Nvbsvnq04XL75x7zyHkltEFo5IuKa1YTnm5yCiTC5bLLC_YGZkxUfBUcPFxTmYTk07QJbmKcUsp40JWM_K5ttj0wcf94JK9t4cG9sFbaHrvcNmhhd64ZW38uDHfmHQWYkwcOB8b0NrbNtE-JPVIJ72JccAEXWccYjCuuyYXGmzEm9Ock_fH9dvqOd28Pr2sHjZpw7ns07zMUGjkouGtzCuQVc6w0pwCZaxloHPWtlUhsChBigrLDJC2XELJCl7Xms_J3dF3_P1rwNirrR-CG0-qLGOVFLmk5UiJI9WMeWNArfbB7CAcFKNqalL9NammJtWpyVF3f9QZN2bdwY8PtlU9HKwPOoBrTFT8f4tfUfB8OQ</recordid><startdate>20190703</startdate><enddate>20190703</enddate><creator>Shirani, Keyvan</creator><creator>Nourbakhsh, Mohammad Sadegh</creator><creator>Rafienia, Mohammad</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5252-4047</orcidid></search><sort><creationdate>20190703</creationdate><title>Electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering</title><author>Shirani, Keyvan ; Nourbakhsh, Mohammad Sadegh ; Rafienia, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-472e5fe35c3d849a8941e9f30a011d1af41dd965e67a859e72ae0d38a7163bbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Apatite</topic><topic>Bioactivity</topic><topic>Biocompatibility</topic><topic>Bioglass</topic><topic>Biological activity</topic><topic>Biomedical materials</topic><topic>Body fluids</topic><topic>bone tissue engineering</topic><topic>degradation behavior</topic><topic>electrospun scaffold</topic><topic>Gelatin</topic><topic>In vitro methods and tests</topic><topic>mechanical properties</topic><topic>Mechanical tests</topic><topic>Modulus of elasticity</topic><topic>nanocomposite</topic><topic>Polycaprolactone</topic><topic>Scaffolds</topic><topic>Submerging</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Ultimate tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shirani, Keyvan</creatorcontrib><creatorcontrib>Nourbakhsh, Mohammad Sadegh</creatorcontrib><creatorcontrib>Rafienia, Mohammad</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of polymeric materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shirani, Keyvan</au><au>Nourbakhsh, Mohammad Sadegh</au><au>Rafienia, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering</atitle><jtitle>International journal of polymeric materials</jtitle><date>2019-07-03</date><risdate>2019</risdate><volume>68</volume><issue>10</issue><spage>607</spage><epage>615</epage><pages>607-615</pages><issn>0091-4037</issn><eissn>1563-535X</eissn><abstract>Polycaprolactone scaffolds, polycaprolactone/gelatin, and polycaprolactone/gelatin/bioactive glass scaffolds were prepared with ratios of 50/50, 25/75, and 75/25 for polymers and 5 wt% for the bioactive glass via electrospinning and then were characterized using. The results indicated that by adding gelatin and bioactive glass to polycaprolactone scaffold, the diameter of fiber decreased from 557 to 167 nm. The results showed growth of apatite layer on the scaffolds after immersion in simulated body fluid for 28 days. The results of mechanical test revealed that by adding bioactive glass to scaffolds, the ultimate tensile strength and Young's modulus increase about two folds.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/00914037.2018.1482461</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5252-4047</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-4037 |
ispartof | International journal of polymeric materials, 2019-07, Vol.68 (10), p.607-615 |
issn | 0091-4037 1563-535X |
language | eng |
recordid | cdi_crossref_primary_10_1080_00914037_2018_1482461 |
source | Taylor and Francis Science and Technology Collection |
subjects | Apatite Bioactivity Biocompatibility Bioglass Biological activity Biomedical materials Body fluids bone tissue engineering degradation behavior electrospun scaffold Gelatin In vitro methods and tests mechanical properties Mechanical tests Modulus of elasticity nanocomposite Polycaprolactone Scaffolds Submerging Surgical implants Tissue engineering Ultimate tensile strength |
title | Electrospun polycaprolactone/gelatin/bioactive glass nanoscaffold for bone tissue engineering |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A52%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20polycaprolactone/gelatin/bioactive%20glass%20nanoscaffold%20for%20bone%20tissue%20engineering&rft.jtitle=International%20journal%20of%20polymeric%20materials&rft.au=Shirani,%20Keyvan&rft.date=2019-07-03&rft.volume=68&rft.issue=10&rft.spage=607&rft.epage=615&rft.pages=607-615&rft.issn=0091-4037&rft.eissn=1563-535X&rft_id=info:doi/10.1080/00914037.2018.1482461&rft_dat=%3Cproquest_cross%3E2219854807%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-472e5fe35c3d849a8941e9f30a011d1af41dd965e67a859e72ae0d38a7163bbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2219854807&rft_id=info:pmid/&rfr_iscdi=true |