Loading…

The Ideal Structure of Semigroups of Linear Transformations with Upper Bounds on Their Nullity or Defect

Suppose V is a vector space with dim V = p ≥ q ≥ ℵ 0 , and let T(V) denote the semigroup (under composition) of all linear transformations of V. For α ∈ T (V), let ker α and ran α denote the "kernel" and the "range" of α, and write n(α) = dim ker α and d(α) = codim ran α. In this...

Full description

Saved in:
Bibliographic Details
Published in:Communications in algebra 2009-07, Vol.37 (7), p.2522-2539
Main Authors: Mendes-Gonçalves, Suzana, Sullivan, R. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c366t-c0902929afbcc3edee110c2759dbde1803a9a957a2a60a55fa3828db06c0f873
cites cdi_FETCH-LOGICAL-c366t-c0902929afbcc3edee110c2759dbde1803a9a957a2a60a55fa3828db06c0f873
container_end_page 2539
container_issue 7
container_start_page 2522
container_title Communications in algebra
container_volume 37
creator Mendes-Gonçalves, Suzana
Sullivan, R. P.
description Suppose V is a vector space with dim V = p ≥ q ≥ ℵ 0 , and let T(V) denote the semigroup (under composition) of all linear transformations of V. For α ∈ T (V), let ker α and ran α denote the "kernel" and the "range" of α, and write n(α) = dim ker α and d(α) = codim ran α. In this article, we study the semigroups AM(p, q) = {α ∈ T(V):n(α) 
doi_str_mv 10.1080/00927870802622932
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00927870802622932</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00927870802622932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-c0902929afbcc3edee110c2759dbde1803a9a957a2a60a55fa3828db06c0f873</originalsourceid><addsrcrecordid>eNp1kMFOwzAQRC0EEqXwAdz8A4G1TRJb4gKFQqUKDg3nyHVsapTG0dpR1b8npdwQp93VzhtphpBrBjcMJNwCKF7Kclx5wbkS_IRMWC54dsd4fkomh382Cvg5uYjxC4DlpeQTsqk2li4aq1u6SjiYNKClwdGV3fpPDEMfD9fSd1YjrVB30QXc6uRDF-nOpw396HuL9DEMXTNqOzoaeqRvQ9v6tKcB6ZN11qRLcuZ0G-3V75ySav5czV6z5fvLYvawzIwoipQZUMAVV9qtjRG2sZYxMLzMVbNuLJMgtNIqLzXXBeg8d1pILps1FAacLMWUsKOtwRAjWlf36Lca9zWD-tBU_aepkbk_Mr77CbcL2DZ10vs2oBsjGx9r8T_-De6eb50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Ideal Structure of Semigroups of Linear Transformations with Upper Bounds on Their Nullity or Defect</title><source>Taylor and Francis Science and Technology Collection</source><creator>Mendes-Gonçalves, Suzana ; Sullivan, R. P.</creator><creatorcontrib>Mendes-Gonçalves, Suzana ; Sullivan, R. P.</creatorcontrib><description>Suppose V is a vector space with dim V = p ≥ q ≥ ℵ 0 , and let T(V) denote the semigroup (under composition) of all linear transformations of V. For α ∈ T (V), let ker α and ran α denote the "kernel" and the "range" of α, and write n(α) = dim ker α and d(α) = codim ran α. In this article, we study the semigroups AM(p, q) = {α ∈ T(V):n(α) &lt; q} and AE(p, q) = {α ∈ T(V):d(α) &lt; q}. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area,, we also determine all the maximal right simple subsemigroups of AM(p, q).</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927870802622932</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Bi-ideal ; Linear transformation semigroup ; Maximal regular ; Maximal right simple ; Primary 20M20 ; Quasi-ideal ; Secondary 15A04</subject><ispartof>Communications in algebra, 2009-07, Vol.37 (7), p.2522-2539</ispartof><rights>Copyright Taylor &amp; Francis 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-c0902929afbcc3edee110c2759dbde1803a9a957a2a60a55fa3828db06c0f873</citedby><cites>FETCH-LOGICAL-c366t-c0902929afbcc3edee110c2759dbde1803a9a957a2a60a55fa3828db06c0f873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mendes-Gonçalves, Suzana</creatorcontrib><creatorcontrib>Sullivan, R. P.</creatorcontrib><title>The Ideal Structure of Semigroups of Linear Transformations with Upper Bounds on Their Nullity or Defect</title><title>Communications in algebra</title><description>Suppose V is a vector space with dim V = p ≥ q ≥ ℵ 0 , and let T(V) denote the semigroup (under composition) of all linear transformations of V. For α ∈ T (V), let ker α and ran α denote the "kernel" and the "range" of α, and write n(α) = dim ker α and d(α) = codim ran α. In this article, we study the semigroups AM(p, q) = {α ∈ T(V):n(α) &lt; q} and AE(p, q) = {α ∈ T(V):d(α) &lt; q}. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area,, we also determine all the maximal right simple subsemigroups of AM(p, q).</description><subject>Bi-ideal</subject><subject>Linear transformation semigroup</subject><subject>Maximal regular</subject><subject>Maximal right simple</subject><subject>Primary 20M20</subject><subject>Quasi-ideal</subject><subject>Secondary 15A04</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kMFOwzAQRC0EEqXwAdz8A4G1TRJb4gKFQqUKDg3nyHVsapTG0dpR1b8npdwQp93VzhtphpBrBjcMJNwCKF7Kclx5wbkS_IRMWC54dsd4fkomh382Cvg5uYjxC4DlpeQTsqk2li4aq1u6SjiYNKClwdGV3fpPDEMfD9fSd1YjrVB30QXc6uRDF-nOpw396HuL9DEMXTNqOzoaeqRvQ9v6tKcB6ZN11qRLcuZ0G-3V75ySav5czV6z5fvLYvawzIwoipQZUMAVV9qtjRG2sZYxMLzMVbNuLJMgtNIqLzXXBeg8d1pILps1FAacLMWUsKOtwRAjWlf36Lca9zWD-tBU_aepkbk_Mr77CbcL2DZ10vs2oBsjGx9r8T_-De6eb50</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Mendes-Gonçalves, Suzana</creator><creator>Sullivan, R. P.</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200907</creationdate><title>The Ideal Structure of Semigroups of Linear Transformations with Upper Bounds on Their Nullity or Defect</title><author>Mendes-Gonçalves, Suzana ; Sullivan, R. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-c0902929afbcc3edee110c2759dbde1803a9a957a2a60a55fa3828db06c0f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Bi-ideal</topic><topic>Linear transformation semigroup</topic><topic>Maximal regular</topic><topic>Maximal right simple</topic><topic>Primary 20M20</topic><topic>Quasi-ideal</topic><topic>Secondary 15A04</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendes-Gonçalves, Suzana</creatorcontrib><creatorcontrib>Sullivan, R. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendes-Gonçalves, Suzana</au><au>Sullivan, R. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Ideal Structure of Semigroups of Linear Transformations with Upper Bounds on Their Nullity or Defect</atitle><jtitle>Communications in algebra</jtitle><date>2009-07</date><risdate>2009</risdate><volume>37</volume><issue>7</issue><spage>2522</spage><epage>2539</epage><pages>2522-2539</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>Suppose V is a vector space with dim V = p ≥ q ≥ ℵ 0 , and let T(V) denote the semigroup (under composition) of all linear transformations of V. For α ∈ T (V), let ker α and ran α denote the "kernel" and the "range" of α, and write n(α) = dim ker α and d(α) = codim ran α. In this article, we study the semigroups AM(p, q) = {α ∈ T(V):n(α) &lt; q} and AE(p, q) = {α ∈ T(V):d(α) &lt; q}. First, we determine whether they belong to the class of all semigroups whose sets of bi-ideals and quasi-ideals coincide. Then, for each semigroup, we describe its maximal regular subsemigroup, and we characterise its Green's relations and (two-sided) ideals. As a precursor to further work in this area,, we also determine all the maximal right simple subsemigroups of AM(p, q).</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/00927870802622932</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2009-07, Vol.37 (7), p.2522-2539
issn 0092-7872
1532-4125
language eng
recordid cdi_crossref_primary_10_1080_00927870802622932
source Taylor and Francis Science and Technology Collection
subjects Bi-ideal
Linear transformation semigroup
Maximal regular
Maximal right simple
Primary 20M20
Quasi-ideal
Secondary 15A04
title The Ideal Structure of Semigroups of Linear Transformations with Upper Bounds on Their Nullity or Defect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Ideal%20Structure%20of%20Semigroups%20of%20Linear%20Transformations%20with%20Upper%20Bounds%20on%20Their%20Nullity%20or%20Defect&rft.jtitle=Communications%20in%20algebra&rft.au=Mendes-Gon%C3%A7alves,%20Suzana&rft.date=2009-07&rft.volume=37&rft.issue=7&rft.spage=2522&rft.epage=2539&rft.pages=2522-2539&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927870802622932&rft_dat=%3Ccrossref_infor%3E10_1080_00927870802622932%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c366t-c0902929afbcc3edee110c2759dbde1803a9a957a2a60a55fa3828db06c0f873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true