Loading…

Skew Monoidal Monoids

Skew monoidal categories are monoidal categories with non-invertible "coherence" morphisms. As shown in a previous article, bialgebroids over a ring R can be characterized as the closed skew monoidal structures on the category Mod-R in which the unit object is R R . This offers a new appro...

Full description

Saved in:
Bibliographic Details
Published in:Communications in algebra 2016-06, Vol.44 (6), p.2368-2388
Main Author: Szlachanyi, K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-7a202a5f3841c6fdff25b446e8101db90023bc51e84cdb0f3eead2a543fe56a53
cites cdi_FETCH-LOGICAL-c343t-7a202a5f3841c6fdff25b446e8101db90023bc51e84cdb0f3eead2a543fe56a53
container_end_page 2388
container_issue 6
container_start_page 2368
container_title Communications in algebra
container_volume 44
creator Szlachanyi, K
description Skew monoidal categories are monoidal categories with non-invertible "coherence" morphisms. As shown in a previous article, bialgebroids over a ring R can be characterized as the closed skew monoidal structures on the category Mod-R in which the unit object is R R . This offers a new approach to bialgebroids and Hopf algebroids. Little is known about skew monoidal structures on general categories. In the present article, we study the one-object case: skew monoidal monoids (SMMs). We show that they possess a dual pair of bialgebroids describing the symmetries of the (co)module categories of the SMM. These bialgebroids are submonoids of their own base and are rank 1 free over the base on the source side. We give various equivalent definitions of SMM, study the structure of their (co)module categories, and discuss the possible closed and Hopf structures on a SMM.
doi_str_mv 10.1080/00927872.2015.1044110
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00927872_2015_1044110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1825451254</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-7a202a5f3841c6fdff25b446e8101db90023bc51e84cdb0f3eead2a543fe56a53</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMoWFePHgWPXrrO5KPN3pTFL1jxoJ5DmiZQTZs16bLsv7el9epphuF5X5iHkCuEJYKEW4AVLWVJlxRQDCfOEeGIZCgYzTlScUyykclH6JScpfQFA1lKmpHL92-7v34NXWhq7eclnZMTp32yF_NckM_Hh4_1c755e3pZ329ywzjr81JToFo4JjmawtXOUVFxXliJgHW1AqCsMgKt5KauwDFrdT0EOHNWFFqwBbmZercx_Oxs6lXbJGO9150Nu6RQUsHF8AEfUDGhJoaUonVqG5tWx4NCUKMG9adBjRrUrGHI3U25pnMhtnofoq9Vrw8-RBd1Z5qk2P8Vv-jOYb8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825451254</pqid></control><display><type>article</type><title>Skew Monoidal Monoids</title><source>Taylor and Francis Science and Technology Collection</source><creator>Szlachanyi, K</creator><creatorcontrib>Szlachanyi, K</creatorcontrib><description>Skew monoidal categories are monoidal categories with non-invertible "coherence" morphisms. As shown in a previous article, bialgebroids over a ring R can be characterized as the closed skew monoidal structures on the category Mod-R in which the unit object is R R . This offers a new approach to bialgebroids and Hopf algebroids. Little is known about skew monoidal structures on general categories. In the present article, we study the one-object case: skew monoidal monoids (SMMs). We show that they possess a dual pair of bialgebroids describing the symmetries of the (co)module categories of the SMM. These bialgebroids are submonoids of their own base and are rank 1 free over the base on the source side. We give various equivalent definitions of SMM, study the structure of their (co)module categories, and discuss the possible closed and Hopf structures on a SMM.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2015.1044110</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Algebra ; Bialgebroid ; Categories ; Coherence ; Equivalence ; Monoids ; Skew monoidal category ; Symmetry</subject><ispartof>Communications in algebra, 2016-06, Vol.44 (6), p.2368-2388</ispartof><rights>Copyright © Taylor &amp; Francis Group, LLC 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-7a202a5f3841c6fdff25b446e8101db90023bc51e84cdb0f3eead2a543fe56a53</citedby><cites>FETCH-LOGICAL-c343t-7a202a5f3841c6fdff25b446e8101db90023bc51e84cdb0f3eead2a543fe56a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27898,27899</link.rule.ids></links><search><creatorcontrib>Szlachanyi, K</creatorcontrib><title>Skew Monoidal Monoids</title><title>Communications in algebra</title><description>Skew monoidal categories are monoidal categories with non-invertible "coherence" morphisms. As shown in a previous article, bialgebroids over a ring R can be characterized as the closed skew monoidal structures on the category Mod-R in which the unit object is R R . This offers a new approach to bialgebroids and Hopf algebroids. Little is known about skew monoidal structures on general categories. In the present article, we study the one-object case: skew monoidal monoids (SMMs). We show that they possess a dual pair of bialgebroids describing the symmetries of the (co)module categories of the SMM. These bialgebroids are submonoids of their own base and are rank 1 free over the base on the source side. We give various equivalent definitions of SMM, study the structure of their (co)module categories, and discuss the possible closed and Hopf structures on a SMM.</description><subject>Algebra</subject><subject>Bialgebroid</subject><subject>Categories</subject><subject>Coherence</subject><subject>Equivalence</subject><subject>Monoids</subject><subject>Skew monoidal category</subject><subject>Symmetry</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMoWFePHgWPXrrO5KPN3pTFL1jxoJ5DmiZQTZs16bLsv7el9epphuF5X5iHkCuEJYKEW4AVLWVJlxRQDCfOEeGIZCgYzTlScUyykclH6JScpfQFA1lKmpHL92-7v34NXWhq7eclnZMTp32yF_NckM_Hh4_1c755e3pZ329ywzjr81JToFo4JjmawtXOUVFxXliJgHW1AqCsMgKt5KauwDFrdT0EOHNWFFqwBbmZercx_Oxs6lXbJGO9150Nu6RQUsHF8AEfUDGhJoaUonVqG5tWx4NCUKMG9adBjRrUrGHI3U25pnMhtnofoq9Vrw8-RBd1Z5qk2P8Vv-jOYb8</recordid><startdate>20160602</startdate><enddate>20160602</enddate><creator>Szlachanyi, K</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160602</creationdate><title>Skew Monoidal Monoids</title><author>Szlachanyi, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-7a202a5f3841c6fdff25b446e8101db90023bc51e84cdb0f3eead2a543fe56a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Bialgebroid</topic><topic>Categories</topic><topic>Coherence</topic><topic>Equivalence</topic><topic>Monoids</topic><topic>Skew monoidal category</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Szlachanyi, K</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Szlachanyi, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skew Monoidal Monoids</atitle><jtitle>Communications in algebra</jtitle><date>2016-06-02</date><risdate>2016</risdate><volume>44</volume><issue>6</issue><spage>2368</spage><epage>2388</epage><pages>2368-2388</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>Skew monoidal categories are monoidal categories with non-invertible "coherence" morphisms. As shown in a previous article, bialgebroids over a ring R can be characterized as the closed skew monoidal structures on the category Mod-R in which the unit object is R R . This offers a new approach to bialgebroids and Hopf algebroids. Little is known about skew monoidal structures on general categories. In the present article, we study the one-object case: skew monoidal monoids (SMMs). We show that they possess a dual pair of bialgebroids describing the symmetries of the (co)module categories of the SMM. These bialgebroids are submonoids of their own base and are rank 1 free over the base on the source side. We give various equivalent definitions of SMM, study the structure of their (co)module categories, and discuss the possible closed and Hopf structures on a SMM.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/00927872.2015.1044110</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2016-06, Vol.44 (6), p.2368-2388
issn 0092-7872
1532-4125
language eng
recordid cdi_crossref_primary_10_1080_00927872_2015_1044110
source Taylor and Francis Science and Technology Collection
subjects Algebra
Bialgebroid
Categories
Coherence
Equivalence
Monoids
Skew monoidal category
Symmetry
title Skew Monoidal Monoids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T07%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skew%20Monoidal%20Monoids&rft.jtitle=Communications%20in%20algebra&rft.au=Szlachanyi,%20K&rft.date=2016-06-02&rft.volume=44&rft.issue=6&rft.spage=2368&rft.epage=2388&rft.pages=2368-2388&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2015.1044110&rft_dat=%3Cproquest_cross%3E1825451254%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-7a202a5f3841c6fdff25b446e8101db90023bc51e84cdb0f3eead2a543fe56a53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1825451254&rft_id=info:pmid/&rfr_iscdi=true