Loading…
Finite groups with Hall subnormally embedded Schmidt subgroups
A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup...
Saved in:
Published in: | Communications in algebra 2020-02, Vol.48 (2), p.668-675 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c216t-a20372087db2ae072ed3e071b7ae29a43561116843ee63de2f01fcc92dca1cca3 |
container_end_page | 675 |
container_issue | 2 |
container_start_page | 668 |
container_title | Communications in algebra |
container_volume | 48 |
creator | Monakhov, Victor S. Kniahina, Viktoryia N. |
description | A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded. |
doi_str_mv | 10.1080/00927872.2019.1654495 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00927872_2019_1654495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363766892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-a20372087db2ae072ed3e071b7ae29a43561116843ee63de2f01fcc92dca1cca3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcfQSj43Jl70ybtiyjDOWHgg_oc0iR1Gf0zk5axb7-WzlefzoX7O-dyDyH3QBdAM_pIaY4iE7hACvkCeJokeXpBZpAyjBPA9JLMRiYeoWtyE8KOUkhFhjPytHKN62z049t-H6KD67bRWlVVFPqiaX09jMfI1oU1xproU29rZ7pxORluyVWpqmDvzjon36vXr-U63ny8vS9fNrFG4F2skDKBNBOmQGWpQGvYIFAIZTFXCUs5APAsYdZyZiyWFEqtczRagdaKzcnDlLv37W9vQyd3be-b4aRExpngPMtxoNKJ0r4NwdtS7r2rlT9KoHKsSv5VJceq5Lmqwfc8-VxTjj8fWl8Z2alj1frSq0a7INn_ESfFWG_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363766892</pqid></control><display><type>article</type><title>Finite groups with Hall subnormally embedded Schmidt subgroups</title><source>Taylor and Francis Science and Technology Collection</source><creator>Monakhov, Victor S. ; Kniahina, Viktoryia N.</creator><creatorcontrib>Monakhov, Victor S. ; Kniahina, Viktoryia N.</creatorcontrib><description>A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2019.1654495</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Derived subgroup ; finite group ; Hall subgroup ; nilpotent subgroup ; Subgroups ; subnormal subgroup</subject><ispartof>Communications in algebra, 2020-02, Vol.48 (2), p.668-675</ispartof><rights>2019 Taylor & Francis Group, LLC 2019</rights><rights>2019 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-a20372087db2ae072ed3e071b7ae29a43561116843ee63de2f01fcc92dca1cca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Monakhov, Victor S.</creatorcontrib><creatorcontrib>Kniahina, Viktoryia N.</creatorcontrib><title>Finite groups with Hall subnormally embedded Schmidt subgroups</title><title>Communications in algebra</title><description>A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.</description><subject>Derived subgroup</subject><subject>finite group</subject><subject>Hall subgroup</subject><subject>nilpotent subgroup</subject><subject>Subgroups</subject><subject>subnormal subgroup</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcfQSj43Jl70ybtiyjDOWHgg_oc0iR1Gf0zk5axb7-WzlefzoX7O-dyDyH3QBdAM_pIaY4iE7hACvkCeJokeXpBZpAyjBPA9JLMRiYeoWtyE8KOUkhFhjPytHKN62z049t-H6KD67bRWlVVFPqiaX09jMfI1oU1xproU29rZ7pxORluyVWpqmDvzjon36vXr-U63ny8vS9fNrFG4F2skDKBNBOmQGWpQGvYIFAIZTFXCUs5APAsYdZyZiyWFEqtczRagdaKzcnDlLv37W9vQyd3be-b4aRExpngPMtxoNKJ0r4NwdtS7r2rlT9KoHKsSv5VJceq5Lmqwfc8-VxTjj8fWl8Z2alj1frSq0a7INn_ESfFWG_Q</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Monakhov, Victor S.</creator><creator>Kniahina, Viktoryia N.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200201</creationdate><title>Finite groups with Hall subnormally embedded Schmidt subgroups</title><author>Monakhov, Victor S. ; Kniahina, Viktoryia N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-a20372087db2ae072ed3e071b7ae29a43561116843ee63de2f01fcc92dca1cca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Derived subgroup</topic><topic>finite group</topic><topic>Hall subgroup</topic><topic>nilpotent subgroup</topic><topic>Subgroups</topic><topic>subnormal subgroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monakhov, Victor S.</creatorcontrib><creatorcontrib>Kniahina, Viktoryia N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monakhov, Victor S.</au><au>Kniahina, Viktoryia N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite groups with Hall subnormally embedded Schmidt subgroups</atitle><jtitle>Communications in algebra</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>48</volume><issue>2</issue><spage>668</spage><epage>675</epage><pages>668-675</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/00927872.2019.1654495</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-7872 |
ispartof | Communications in algebra, 2020-02, Vol.48 (2), p.668-675 |
issn | 0092-7872 1532-4125 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00927872_2019_1654495 |
source | Taylor and Francis Science and Technology Collection |
subjects | Derived subgroup finite group Hall subgroup nilpotent subgroup Subgroups subnormal subgroup |
title | Finite groups with Hall subnormally embedded Schmidt subgroups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20groups%20with%20Hall%20subnormally%20embedded%20Schmidt%20subgroups&rft.jtitle=Communications%20in%20algebra&rft.au=Monakhov,%20Victor%20S.&rft.date=2020-02-01&rft.volume=48&rft.issue=2&rft.spage=668&rft.epage=675&rft.pages=668-675&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2019.1654495&rft_dat=%3Cproquest_cross%3E2363766892%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-a20372087db2ae072ed3e071b7ae29a43561116843ee63de2f01fcc92dca1cca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2363766892&rft_id=info:pmid/&rfr_iscdi=true |