Loading…

Finite groups with Hall subnormally embedded Schmidt subgroups

A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup...

Full description

Saved in:
Bibliographic Details
Published in:Communications in algebra 2020-02, Vol.48 (2), p.668-675
Main Authors: Monakhov, Victor S., Kniahina, Viktoryia N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c216t-a20372087db2ae072ed3e071b7ae29a43561116843ee63de2f01fcc92dca1cca3
container_end_page 675
container_issue 2
container_start_page 668
container_title Communications in algebra
container_volume 48
creator Monakhov, Victor S.
Kniahina, Viktoryia N.
description A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.
doi_str_mv 10.1080/00927872.2019.1654495
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00927872_2019_1654495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2363766892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-a20372087db2ae072ed3e071b7ae29a43561116843ee63de2f01fcc92dca1cca3</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKcfQSj43Jl70ybtiyjDOWHgg_oc0iR1Gf0zk5axb7-WzlefzoX7O-dyDyH3QBdAM_pIaY4iE7hACvkCeJokeXpBZpAyjBPA9JLMRiYeoWtyE8KOUkhFhjPytHKN62z049t-H6KD67bRWlVVFPqiaX09jMfI1oU1xproU29rZ7pxORluyVWpqmDvzjon36vXr-U63ny8vS9fNrFG4F2skDKBNBOmQGWpQGvYIFAIZTFXCUs5APAsYdZyZiyWFEqtczRagdaKzcnDlLv37W9vQyd3be-b4aRExpngPMtxoNKJ0r4NwdtS7r2rlT9KoHKsSv5VJceq5Lmqwfc8-VxTjj8fWl8Z2alj1frSq0a7INn_ESfFWG_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2363766892</pqid></control><display><type>article</type><title>Finite groups with Hall subnormally embedded Schmidt subgroups</title><source>Taylor and Francis Science and Technology Collection</source><creator>Monakhov, Victor S. ; Kniahina, Viktoryia N.</creator><creatorcontrib>Monakhov, Victor S. ; Kniahina, Viktoryia N.</creatorcontrib><description>A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2019.1654495</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Derived subgroup ; finite group ; Hall subgroup ; nilpotent subgroup ; Subgroups ; subnormal subgroup</subject><ispartof>Communications in algebra, 2020-02, Vol.48 (2), p.668-675</ispartof><rights>2019 Taylor &amp; Francis Group, LLC 2019</rights><rights>2019 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-a20372087db2ae072ed3e071b7ae29a43561116843ee63de2f01fcc92dca1cca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Monakhov, Victor S.</creatorcontrib><creatorcontrib>Kniahina, Viktoryia N.</creatorcontrib><title>Finite groups with Hall subnormally embedded Schmidt subgroups</title><title>Communications in algebra</title><description>A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.</description><subject>Derived subgroup</subject><subject>finite group</subject><subject>Hall subgroup</subject><subject>nilpotent subgroup</subject><subject>Subgroups</subject><subject>subnormal subgroup</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKcfQSj43Jl70ybtiyjDOWHgg_oc0iR1Gf0zk5axb7-WzlefzoX7O-dyDyH3QBdAM_pIaY4iE7hACvkCeJokeXpBZpAyjBPA9JLMRiYeoWtyE8KOUkhFhjPytHKN62z049t-H6KD67bRWlVVFPqiaX09jMfI1oU1xproU29rZ7pxORluyVWpqmDvzjon36vXr-U63ny8vS9fNrFG4F2skDKBNBOmQGWpQGvYIFAIZTFXCUs5APAsYdZyZiyWFEqtczRagdaKzcnDlLv37W9vQyd3be-b4aRExpngPMtxoNKJ0r4NwdtS7r2rlT9KoHKsSv5VJceq5Lmqwfc8-VxTjj8fWl8Z2alj1frSq0a7INn_ESfFWG_Q</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Monakhov, Victor S.</creator><creator>Kniahina, Viktoryia N.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200201</creationdate><title>Finite groups with Hall subnormally embedded Schmidt subgroups</title><author>Monakhov, Victor S. ; Kniahina, Viktoryia N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-a20372087db2ae072ed3e071b7ae29a43561116843ee63de2f01fcc92dca1cca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Derived subgroup</topic><topic>finite group</topic><topic>Hall subgroup</topic><topic>nilpotent subgroup</topic><topic>Subgroups</topic><topic>subnormal subgroup</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monakhov, Victor S.</creatorcontrib><creatorcontrib>Kniahina, Viktoryia N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monakhov, Victor S.</au><au>Kniahina, Viktoryia N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite groups with Hall subnormally embedded Schmidt subgroups</atitle><jtitle>Communications in algebra</jtitle><date>2020-02-01</date><risdate>2020</risdate><volume>48</volume><issue>2</issue><spage>668</spage><epage>675</epage><pages>668-675</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>A subgroup H of a finite group G is said to be Hall subnormally embedded in G if there is a subnormal subgroup N of G such that H is a Hall subgroup of N. A Schmidt group is a finite non-nilpotent group whose all proper subgroups are nilpotent. We prove the nilpotency of the second derived subgroup of a finite group in which each Schmidt subgroup is Hall subnormally embedded.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00927872.2019.1654495</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2020-02, Vol.48 (2), p.668-675
issn 0092-7872
1532-4125
language eng
recordid cdi_crossref_primary_10_1080_00927872_2019_1654495
source Taylor and Francis Science and Technology Collection
subjects Derived subgroup
finite group
Hall subgroup
nilpotent subgroup
Subgroups
subnormal subgroup
title Finite groups with Hall subnormally embedded Schmidt subgroups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A17%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20groups%20with%20Hall%20subnormally%20embedded%20Schmidt%20subgroups&rft.jtitle=Communications%20in%20algebra&rft.au=Monakhov,%20Victor%20S.&rft.date=2020-02-01&rft.volume=48&rft.issue=2&rft.spage=668&rft.epage=675&rft.pages=668-675&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2019.1654495&rft_dat=%3Cproquest_cross%3E2363766892%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-a20372087db2ae072ed3e071b7ae29a43561116843ee63de2f01fcc92dca1cca3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2363766892&rft_id=info:pmid/&rfr_iscdi=true