Loading…

Counting the numerical semigroups with a specific special gap

Let S be a numerical semigroup. An element is a special gap of S if is also a numerical semigroup. If a is a positive integer, we denote by the set of all numerical semigroups for which a is a special gap. We say that an element of is -irreducible if it cannot be expressed as the intersection of two...

Full description

Saved in:
Bibliographic Details
Published in:Communications in algebra 2022-12, Vol.50 (12), p.5132-5144
Main Authors: Moreno-Frías, M. A., Rosales, J. C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c216t-20f76a4b809e5c562dda2fe22e6cc76d838ecc89d653ad76054cb59f104907503
container_end_page 5144
container_issue 12
container_start_page 5132
container_title Communications in algebra
container_volume 50
creator Moreno-Frías, M. A.
Rosales, J. C.
description Let S be a numerical semigroup. An element is a special gap of S if is also a numerical semigroup. If a is a positive integer, we denote by the set of all numerical semigroups for which a is a special gap. We say that an element of is -irreducible if it cannot be expressed as the intersection of two numerical semigroups of properly containing it. The main aim of this paper is to describe three algorithmic procedures: the first one calculates the elements of the second one determines whether or not a numerical semigroup is -irreducible and the third one computes all the -irreducibles numerical semigroups.
doi_str_mv 10.1080/00927872.2022.2082458
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00927872_2022_2082458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2715916137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c216t-20f76a4b809e5c562dda2fe22e6cc76d838ecc89d653ad76054cb59f104907503</originalsourceid><addsrcrecordid>eNp9kMtqwzAQRUVpoenjEwqGrp2OxtbDi0JL6AsC3bRrochSouBXJZuQv6-N0203M7M49w4cQu4oLClIeAAoUEiBSwSchsScyTOyoCzDNKfIzsliYtIJuiRXMe4BKBMSF-Rx1Q5N75tt0u9s0gy1Dd7oKom29tvQDl1MDr7fJTqJnTXeeTMfI7LV3Q25cLqK9va0r8n368vX6j1df759rJ7XqUHK-xTBCa7zjYTCMsM4lqVGZxEtN0bwUmbSGiOLkrNMl4IDy82GFY5CXoBgkF2T-7m3C-3PYGOv9u0QmvGlQkFZQTnNxEixmTKhjTFYp7rgax2OioKaTKk_U2oypU6mxtzTnPONa0OtD22oStXrY9UGF3RjfFTZ_xW_yppupQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2715916137</pqid></control><display><type>article</type><title>Counting the numerical semigroups with a specific special gap</title><source>Taylor and Francis Science and Technology Collection</source><creator>Moreno-Frías, M. A. ; Rosales, J. C.</creator><creatorcontrib>Moreno-Frías, M. A. ; Rosales, J. C.</creatorcontrib><description>Let S be a numerical semigroup. An element is a special gap of S if is also a numerical semigroup. If a is a positive integer, we denote by the set of all numerical semigroups for which a is a special gap. We say that an element of is -irreducible if it cannot be expressed as the intersection of two numerical semigroups of properly containing it. The main aim of this paper is to describe three algorithmic procedures: the first one calculates the elements of the second one determines whether or not a numerical semigroup is -irreducible and the third one computes all the -irreducibles numerical semigroups.</description><identifier>ISSN: 0092-7872</identifier><identifier>EISSN: 1532-4125</identifier><identifier>DOI: 10.1080/00927872.2022.2082458</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>(a)-irreducible numerical semigroup ; ANI-semigroup ; atomic numerical semigroup ; Frobenius number ; gap ; genus ; irreducible numerical semigroup ; Primary: 20M14 ; Secondary: 11Y16 ; Semigroups</subject><ispartof>Communications in algebra, 2022-12, Vol.50 (12), p.5132-5144</ispartof><rights>2022 Taylor &amp; Francis Group, LLC 2022</rights><rights>2022 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c216t-20f76a4b809e5c562dda2fe22e6cc76d838ecc89d653ad76054cb59f104907503</cites><orcidid>0000-0003-3353-4335</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Moreno-Frías, M. A.</creatorcontrib><creatorcontrib>Rosales, J. C.</creatorcontrib><title>Counting the numerical semigroups with a specific special gap</title><title>Communications in algebra</title><description>Let S be a numerical semigroup. An element is a special gap of S if is also a numerical semigroup. If a is a positive integer, we denote by the set of all numerical semigroups for which a is a special gap. We say that an element of is -irreducible if it cannot be expressed as the intersection of two numerical semigroups of properly containing it. The main aim of this paper is to describe three algorithmic procedures: the first one calculates the elements of the second one determines whether or not a numerical semigroup is -irreducible and the third one computes all the -irreducibles numerical semigroups.</description><subject>(a)-irreducible numerical semigroup</subject><subject>ANI-semigroup</subject><subject>atomic numerical semigroup</subject><subject>Frobenius number</subject><subject>gap</subject><subject>genus</subject><subject>irreducible numerical semigroup</subject><subject>Primary: 20M14</subject><subject>Secondary: 11Y16</subject><subject>Semigroups</subject><issn>0092-7872</issn><issn>1532-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMtqwzAQRUVpoenjEwqGrp2OxtbDi0JL6AsC3bRrochSouBXJZuQv6-N0203M7M49w4cQu4oLClIeAAoUEiBSwSchsScyTOyoCzDNKfIzsliYtIJuiRXMe4BKBMSF-Rx1Q5N75tt0u9s0gy1Dd7oKom29tvQDl1MDr7fJTqJnTXeeTMfI7LV3Q25cLqK9va0r8n368vX6j1df759rJ7XqUHK-xTBCa7zjYTCMsM4lqVGZxEtN0bwUmbSGiOLkrNMl4IDy82GFY5CXoBgkF2T-7m3C-3PYGOv9u0QmvGlQkFZQTnNxEixmTKhjTFYp7rgax2OioKaTKk_U2oypU6mxtzTnPONa0OtD22oStXrY9UGF3RjfFTZ_xW_yppupQ</recordid><startdate>20221202</startdate><enddate>20221202</enddate><creator>Moreno-Frías, M. A.</creator><creator>Rosales, J. C.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3353-4335</orcidid></search><sort><creationdate>20221202</creationdate><title>Counting the numerical semigroups with a specific special gap</title><author>Moreno-Frías, M. A. ; Rosales, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c216t-20f76a4b809e5c562dda2fe22e6cc76d838ecc89d653ad76054cb59f104907503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>(a)-irreducible numerical semigroup</topic><topic>ANI-semigroup</topic><topic>atomic numerical semigroup</topic><topic>Frobenius number</topic><topic>gap</topic><topic>genus</topic><topic>irreducible numerical semigroup</topic><topic>Primary: 20M14</topic><topic>Secondary: 11Y16</topic><topic>Semigroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moreno-Frías, M. A.</creatorcontrib><creatorcontrib>Rosales, J. C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moreno-Frías, M. A.</au><au>Rosales, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Counting the numerical semigroups with a specific special gap</atitle><jtitle>Communications in algebra</jtitle><date>2022-12-02</date><risdate>2022</risdate><volume>50</volume><issue>12</issue><spage>5132</spage><epage>5144</epage><pages>5132-5144</pages><issn>0092-7872</issn><eissn>1532-4125</eissn><abstract>Let S be a numerical semigroup. An element is a special gap of S if is also a numerical semigroup. If a is a positive integer, we denote by the set of all numerical semigroups for which a is a special gap. We say that an element of is -irreducible if it cannot be expressed as the intersection of two numerical semigroups of properly containing it. The main aim of this paper is to describe three algorithmic procedures: the first one calculates the elements of the second one determines whether or not a numerical semigroup is -irreducible and the third one computes all the -irreducibles numerical semigroups.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00927872.2022.2082458</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3353-4335</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0092-7872
ispartof Communications in algebra, 2022-12, Vol.50 (12), p.5132-5144
issn 0092-7872
1532-4125
language eng
recordid cdi_crossref_primary_10_1080_00927872_2022_2082458
source Taylor and Francis Science and Technology Collection
subjects (a)-irreducible numerical semigroup
ANI-semigroup
atomic numerical semigroup
Frobenius number
gap
genus
irreducible numerical semigroup
Primary: 20M14
Secondary: 11Y16
Semigroups
title Counting the numerical semigroups with a specific special gap
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A32%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Counting%20the%20numerical%20semigroups%20with%20a%20specific%20special%20gap&rft.jtitle=Communications%20in%20algebra&rft.au=Moreno-Fr%C3%ADas,%20M.%20A.&rft.date=2022-12-02&rft.volume=50&rft.issue=12&rft.spage=5132&rft.epage=5144&rft.pages=5132-5144&rft.issn=0092-7872&rft.eissn=1532-4125&rft_id=info:doi/10.1080/00927872.2022.2082458&rft_dat=%3Cproquest_cross%3E2715916137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c216t-20f76a4b809e5c562dda2fe22e6cc76d838ecc89d653ad76054cb59f104907503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2715916137&rft_id=info:pmid/&rfr_iscdi=true