Loading…
Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis
The concept of "big" data is nothing new to archaeologists; we have long made a profession of collecting, organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to landscape-wide environmental characteristics. Regardless of this abundance, we have...
Saved in:
Published in: | Journal of field archaeology 2020-02, Vol.45 (sup1), p.S27-S38 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73 |
---|---|
cites | cdi_FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73 |
container_end_page | S38 |
container_issue | sup1 |
container_start_page | S27 |
container_title | Journal of field archaeology |
container_volume | 45 |
creator | Howey, Meghan C. L. Sullivan, Franklin B. Burg, Marieka Brouwer Palace, Michael W. |
description | The concept of "big" data is nothing new to archaeologists; we have long made a profession of collecting, organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to landscape-wide environmental characteristics. Regardless of this abundance, we have and continue to confront the self-same problem inherent in "big" data, namely what analyses will actually help us use these data to advance understandings of past human behaviors. With burgeoning remote sensing technologies archaeology faces a new wave of "big" data, but how do these techniques improve our ability to make the inferential leaps to bridge the present to the past and bring new insights forward? We argue that, to date, remote sensing techniques (satellite, aerial, and unpersonned aerial imagery) have been applied somewhat narrowly to mostly high-resolution site-based research in archaeology. To truly unleash the capabilities of these techniques, and expand our capacity for wrangling "big" data to more fully investigate past patterns, we need to conduct iterative analyses incorporating remotely sensed data on bounded archaeological sites and regions and unbounded landscapes. A case study from the Late Precontact (ca. A.D. 1200-1600) period in the northern Great Lakes of North America detailing how such an iterative approach can be initiated is explored here. |
doi_str_mv | 10.1080/00934690.2020.1713435 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00934690_2020_1713435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00934690_2020_1713435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwCEh-gRT_xE1yo7QUKlWi4udsbZw1BKVxZbugvD0JLVdOO1rNjDQfIdecTTjL2Q1jhUynBZsIJvpXxmUq1QkZCZaKJFW5OCWjwZMMpnNyEcInYzwrsmJEwjNuXcSmoy_YBqzoXf1OFxCBQlvRVUQPsf5COtvtvAPzgYFGR-f7Ju49NHSJ0AukC4xoYu3a39gGQqTrXgUDO6Qb7wyGQGctNF2owyU5s9AEvDreMXlb3r_OH5P108NqPlsnRqosJiUvS8ULq0ChNVkuK5HlKSprMxSGSTBTrPpJhagEk70D8lyKaW5YVXKLmRwTdeg13oXg0eqdr7fgO82ZHsjpP3J6IKeP5Prc7SFXt9b5LXw731Q6Qtc4bz20pg5a_l_xA78mduE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis</title><source>Taylor & Francis</source><creator>Howey, Meghan C. L. ; Sullivan, Franklin B. ; Burg, Marieka Brouwer ; Palace, Michael W.</creator><creatorcontrib>Howey, Meghan C. L. ; Sullivan, Franklin B. ; Burg, Marieka Brouwer ; Palace, Michael W.</creatorcontrib><description>The concept of "big" data is nothing new to archaeologists; we have long made a profession of collecting, organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to landscape-wide environmental characteristics. Regardless of this abundance, we have and continue to confront the self-same problem inherent in "big" data, namely what analyses will actually help us use these data to advance understandings of past human behaviors. With burgeoning remote sensing technologies archaeology faces a new wave of "big" data, but how do these techniques improve our ability to make the inferential leaps to bridge the present to the past and bring new insights forward? We argue that, to date, remote sensing techniques (satellite, aerial, and unpersonned aerial imagery) have been applied somewhat narrowly to mostly high-resolution site-based research in archaeology. To truly unleash the capabilities of these techniques, and expand our capacity for wrangling "big" data to more fully investigate past patterns, we need to conduct iterative analyses incorporating remotely sensed data on bounded archaeological sites and regions and unbounded landscapes. A case study from the Late Precontact (ca. A.D. 1200-1600) period in the northern Great Lakes of North America detailing how such an iterative approach can be initiated is explored here.</description><identifier>ISSN: 0093-4690</identifier><identifier>EISSN: 2042-4582</identifier><identifier>DOI: 10.1080/00934690.2020.1713435</identifier><language>eng</language><publisher>Routledge</publisher><subject>Food Storage ; Great Lakes ; Landscape Archaeology ; Lidar ; Maximum Entropy ; Remote Sensing</subject><ispartof>Journal of field archaeology, 2020-02, Vol.45 (sup1), p.S27-S38</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73</citedby><cites>FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73</cites><orcidid>0000-0002-4472-0144 ; 0000-0002-3272-2767 ; 0000-0002-3505-2906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Howey, Meghan C. L.</creatorcontrib><creatorcontrib>Sullivan, Franklin B.</creatorcontrib><creatorcontrib>Burg, Marieka Brouwer</creatorcontrib><creatorcontrib>Palace, Michael W.</creatorcontrib><title>Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis</title><title>Journal of field archaeology</title><description>The concept of "big" data is nothing new to archaeologists; we have long made a profession of collecting, organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to landscape-wide environmental characteristics. Regardless of this abundance, we have and continue to confront the self-same problem inherent in "big" data, namely what analyses will actually help us use these data to advance understandings of past human behaviors. With burgeoning remote sensing technologies archaeology faces a new wave of "big" data, but how do these techniques improve our ability to make the inferential leaps to bridge the present to the past and bring new insights forward? We argue that, to date, remote sensing techniques (satellite, aerial, and unpersonned aerial imagery) have been applied somewhat narrowly to mostly high-resolution site-based research in archaeology. To truly unleash the capabilities of these techniques, and expand our capacity for wrangling "big" data to more fully investigate past patterns, we need to conduct iterative analyses incorporating remotely sensed data on bounded archaeological sites and regions and unbounded landscapes. A case study from the Late Precontact (ca. A.D. 1200-1600) period in the northern Great Lakes of North America detailing how such an iterative approach can be initiated is explored here.</description><subject>Food Storage</subject><subject>Great Lakes</subject><subject>Landscape Archaeology</subject><subject>Lidar</subject><subject>Maximum Entropy</subject><subject>Remote Sensing</subject><issn>0093-4690</issn><issn>2042-4582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwCEh-gRT_xE1yo7QUKlWi4udsbZw1BKVxZbugvD0JLVdOO1rNjDQfIdecTTjL2Q1jhUynBZsIJvpXxmUq1QkZCZaKJFW5OCWjwZMMpnNyEcInYzwrsmJEwjNuXcSmoy_YBqzoXf1OFxCBQlvRVUQPsf5COtvtvAPzgYFGR-f7Ju49NHSJ0AukC4xoYu3a39gGQqTrXgUDO6Qb7wyGQGctNF2owyU5s9AEvDreMXlb3r_OH5P108NqPlsnRqosJiUvS8ULq0ChNVkuK5HlKSprMxSGSTBTrPpJhagEk70D8lyKaW5YVXKLmRwTdeg13oXg0eqdr7fgO82ZHsjpP3J6IKeP5Prc7SFXt9b5LXw731Q6Qtc4bz20pg5a_l_xA78mduE</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Howey, Meghan C. L.</creator><creator>Sullivan, Franklin B.</creator><creator>Burg, Marieka Brouwer</creator><creator>Palace, Michael W.</creator><general>Routledge</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4472-0144</orcidid><orcidid>https://orcid.org/0000-0002-3272-2767</orcidid><orcidid>https://orcid.org/0000-0002-3505-2906</orcidid></search><sort><creationdate>20200220</creationdate><title>Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis</title><author>Howey, Meghan C. L. ; Sullivan, Franklin B. ; Burg, Marieka Brouwer ; Palace, Michael W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Food Storage</topic><topic>Great Lakes</topic><topic>Landscape Archaeology</topic><topic>Lidar</topic><topic>Maximum Entropy</topic><topic>Remote Sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howey, Meghan C. L.</creatorcontrib><creatorcontrib>Sullivan, Franklin B.</creatorcontrib><creatorcontrib>Burg, Marieka Brouwer</creatorcontrib><creatorcontrib>Palace, Michael W.</creatorcontrib><collection>Taylor & Francis Open Access Journals</collection><collection>CrossRef</collection><jtitle>Journal of field archaeology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howey, Meghan C. L.</au><au>Sullivan, Franklin B.</au><au>Burg, Marieka Brouwer</au><au>Palace, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis</atitle><jtitle>Journal of field archaeology</jtitle><date>2020-02-20</date><risdate>2020</risdate><volume>45</volume><issue>sup1</issue><spage>S27</spage><epage>S38</epage><pages>S27-S38</pages><issn>0093-4690</issn><eissn>2042-4582</eissn><abstract>The concept of "big" data is nothing new to archaeologists; we have long made a profession of collecting, organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to landscape-wide environmental characteristics. Regardless of this abundance, we have and continue to confront the self-same problem inherent in "big" data, namely what analyses will actually help us use these data to advance understandings of past human behaviors. With burgeoning remote sensing technologies archaeology faces a new wave of "big" data, but how do these techniques improve our ability to make the inferential leaps to bridge the present to the past and bring new insights forward? We argue that, to date, remote sensing techniques (satellite, aerial, and unpersonned aerial imagery) have been applied somewhat narrowly to mostly high-resolution site-based research in archaeology. To truly unleash the capabilities of these techniques, and expand our capacity for wrangling "big" data to more fully investigate past patterns, we need to conduct iterative analyses incorporating remotely sensed data on bounded archaeological sites and regions and unbounded landscapes. A case study from the Late Precontact (ca. A.D. 1200-1600) period in the northern Great Lakes of North America detailing how such an iterative approach can be initiated is explored here.</abstract><pub>Routledge</pub><doi>10.1080/00934690.2020.1713435</doi><orcidid>https://orcid.org/0000-0002-4472-0144</orcidid><orcidid>https://orcid.org/0000-0002-3272-2767</orcidid><orcidid>https://orcid.org/0000-0002-3505-2906</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0093-4690 |
ispartof | Journal of field archaeology, 2020-02, Vol.45 (sup1), p.S27-S38 |
issn | 0093-4690 2042-4582 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00934690_2020_1713435 |
source | Taylor & Francis |
subjects | Food Storage Great Lakes Landscape Archaeology Lidar Maximum Entropy Remote Sensing |
title | Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remotely%20Sensed%20Big%20Data%20and%20Iterative%20Approaches%20to%20Cultural%20Feature%20Detection%20and%20Past%20Landscape%20Process%20Analysis&rft.jtitle=Journal%20of%20field%20archaeology&rft.au=Howey,%20Meghan%20C.%20L.&rft.date=2020-02-20&rft.volume=45&rft.issue=sup1&rft.spage=S27&rft.epage=S38&rft.pages=S27-S38&rft.issn=0093-4690&rft.eissn=2042-4582&rft_id=info:doi/10.1080/00934690.2020.1713435&rft_dat=%3Ccrossref_infor%3E10_1080_00934690_2020_1713435%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |