Loading…

Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis

The concept of "big" data is nothing new to archaeologists; we have long made a profession of collecting, organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to landscape-wide environmental characteristics. Regardless of this abundance, we have...

Full description

Saved in:
Bibliographic Details
Published in:Journal of field archaeology 2020-02, Vol.45 (sup1), p.S27-S38
Main Authors: Howey, Meghan C. L., Sullivan, Franklin B., Burg, Marieka Brouwer, Palace, Michael W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73
cites cdi_FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73
container_end_page S38
container_issue sup1
container_start_page S27
container_title Journal of field archaeology
container_volume 45
creator Howey, Meghan C. L.
Sullivan, Franklin B.
Burg, Marieka Brouwer
Palace, Michael W.
description The concept of "big" data is nothing new to archaeologists; we have long made a profession of collecting, organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to landscape-wide environmental characteristics. Regardless of this abundance, we have and continue to confront the self-same problem inherent in "big" data, namely what analyses will actually help us use these data to advance understandings of past human behaviors. With burgeoning remote sensing technologies archaeology faces a new wave of "big" data, but how do these techniques improve our ability to make the inferential leaps to bridge the present to the past and bring new insights forward? We argue that, to date, remote sensing techniques (satellite, aerial, and unpersonned aerial imagery) have been applied somewhat narrowly to mostly high-resolution site-based research in archaeology. To truly unleash the capabilities of these techniques, and expand our capacity for wrangling "big" data to more fully investigate past patterns, we need to conduct iterative analyses incorporating remotely sensed data on bounded archaeological sites and regions and unbounded landscapes. A case study from the Late Precontact (ca. A.D. 1200-1600) period in the northern Great Lakes of North America detailing how such an iterative approach can be initiated is explored here.
doi_str_mv 10.1080/00934690.2020.1713435
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00934690_2020_1713435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00934690_2020_1713435</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwCEh-gRT_xE1yo7QUKlWi4udsbZw1BKVxZbugvD0JLVdOO1rNjDQfIdecTTjL2Q1jhUynBZsIJvpXxmUq1QkZCZaKJFW5OCWjwZMMpnNyEcInYzwrsmJEwjNuXcSmoy_YBqzoXf1OFxCBQlvRVUQPsf5COtvtvAPzgYFGR-f7Ju49NHSJ0AukC4xoYu3a39gGQqTrXgUDO6Qb7wyGQGctNF2owyU5s9AEvDreMXlb3r_OH5P108NqPlsnRqosJiUvS8ULq0ChNVkuK5HlKSprMxSGSTBTrPpJhagEk70D8lyKaW5YVXKLmRwTdeg13oXg0eqdr7fgO82ZHsjpP3J6IKeP5Prc7SFXt9b5LXw731Q6Qtc4bz20pg5a_l_xA78mduE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis</title><source>Taylor &amp; Francis</source><creator>Howey, Meghan C. L. ; Sullivan, Franklin B. ; Burg, Marieka Brouwer ; Palace, Michael W.</creator><creatorcontrib>Howey, Meghan C. L. ; Sullivan, Franklin B. ; Burg, Marieka Brouwer ; Palace, Michael W.</creatorcontrib><description>The concept of "big" data is nothing new to archaeologists; we have long made a profession of collecting, organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to landscape-wide environmental characteristics. Regardless of this abundance, we have and continue to confront the self-same problem inherent in "big" data, namely what analyses will actually help us use these data to advance understandings of past human behaviors. With burgeoning remote sensing technologies archaeology faces a new wave of "big" data, but how do these techniques improve our ability to make the inferential leaps to bridge the present to the past and bring new insights forward? We argue that, to date, remote sensing techniques (satellite, aerial, and unpersonned aerial imagery) have been applied somewhat narrowly to mostly high-resolution site-based research in archaeology. To truly unleash the capabilities of these techniques, and expand our capacity for wrangling "big" data to more fully investigate past patterns, we need to conduct iterative analyses incorporating remotely sensed data on bounded archaeological sites and regions and unbounded landscapes. A case study from the Late Precontact (ca. A.D. 1200-1600) period in the northern Great Lakes of North America detailing how such an iterative approach can be initiated is explored here.</description><identifier>ISSN: 0093-4690</identifier><identifier>EISSN: 2042-4582</identifier><identifier>DOI: 10.1080/00934690.2020.1713435</identifier><language>eng</language><publisher>Routledge</publisher><subject>Food Storage ; Great Lakes ; Landscape Archaeology ; Lidar ; Maximum Entropy ; Remote Sensing</subject><ispartof>Journal of field archaeology, 2020-02, Vol.45 (sup1), p.S27-S38</ispartof><rights>2020 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73</citedby><cites>FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73</cites><orcidid>0000-0002-4472-0144 ; 0000-0002-3272-2767 ; 0000-0002-3505-2906</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Howey, Meghan C. L.</creatorcontrib><creatorcontrib>Sullivan, Franklin B.</creatorcontrib><creatorcontrib>Burg, Marieka Brouwer</creatorcontrib><creatorcontrib>Palace, Michael W.</creatorcontrib><title>Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis</title><title>Journal of field archaeology</title><description>The concept of "big" data is nothing new to archaeologists; we have long made a profession of collecting, organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to landscape-wide environmental characteristics. Regardless of this abundance, we have and continue to confront the self-same problem inherent in "big" data, namely what analyses will actually help us use these data to advance understandings of past human behaviors. With burgeoning remote sensing technologies archaeology faces a new wave of "big" data, but how do these techniques improve our ability to make the inferential leaps to bridge the present to the past and bring new insights forward? We argue that, to date, remote sensing techniques (satellite, aerial, and unpersonned aerial imagery) have been applied somewhat narrowly to mostly high-resolution site-based research in archaeology. To truly unleash the capabilities of these techniques, and expand our capacity for wrangling "big" data to more fully investigate past patterns, we need to conduct iterative analyses incorporating remotely sensed data on bounded archaeological sites and regions and unbounded landscapes. A case study from the Late Precontact (ca. A.D. 1200-1600) period in the northern Great Lakes of North America detailing how such an iterative approach can be initiated is explored here.</description><subject>Food Storage</subject><subject>Great Lakes</subject><subject>Landscape Archaeology</subject><subject>Lidar</subject><subject>Maximum Entropy</subject><subject>Remote Sensing</subject><issn>0093-4690</issn><issn>2042-4582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kM1OwzAQhC0EEqXwCEh-gRT_xE1yo7QUKlWi4udsbZw1BKVxZbugvD0JLVdOO1rNjDQfIdecTTjL2Q1jhUynBZsIJvpXxmUq1QkZCZaKJFW5OCWjwZMMpnNyEcInYzwrsmJEwjNuXcSmoy_YBqzoXf1OFxCBQlvRVUQPsf5COtvtvAPzgYFGR-f7Ju49NHSJ0AukC4xoYu3a39gGQqTrXgUDO6Qb7wyGQGctNF2owyU5s9AEvDreMXlb3r_OH5P108NqPlsnRqosJiUvS8ULq0ChNVkuK5HlKSprMxSGSTBTrPpJhagEk70D8lyKaW5YVXKLmRwTdeg13oXg0eqdr7fgO82ZHsjpP3J6IKeP5Prc7SFXt9b5LXw731Q6Qtc4bz20pg5a_l_xA78mduE</recordid><startdate>20200220</startdate><enddate>20200220</enddate><creator>Howey, Meghan C. L.</creator><creator>Sullivan, Franklin B.</creator><creator>Burg, Marieka Brouwer</creator><creator>Palace, Michael W.</creator><general>Routledge</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4472-0144</orcidid><orcidid>https://orcid.org/0000-0002-3272-2767</orcidid><orcidid>https://orcid.org/0000-0002-3505-2906</orcidid></search><sort><creationdate>20200220</creationdate><title>Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis</title><author>Howey, Meghan C. L. ; Sullivan, Franklin B. ; Burg, Marieka Brouwer ; Palace, Michael W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Food Storage</topic><topic>Great Lakes</topic><topic>Landscape Archaeology</topic><topic>Lidar</topic><topic>Maximum Entropy</topic><topic>Remote Sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howey, Meghan C. L.</creatorcontrib><creatorcontrib>Sullivan, Franklin B.</creatorcontrib><creatorcontrib>Burg, Marieka Brouwer</creatorcontrib><creatorcontrib>Palace, Michael W.</creatorcontrib><collection>Taylor &amp; Francis Open Access Journals</collection><collection>CrossRef</collection><jtitle>Journal of field archaeology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howey, Meghan C. L.</au><au>Sullivan, Franklin B.</au><au>Burg, Marieka Brouwer</au><au>Palace, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis</atitle><jtitle>Journal of field archaeology</jtitle><date>2020-02-20</date><risdate>2020</risdate><volume>45</volume><issue>sup1</issue><spage>S27</spage><epage>S38</epage><pages>S27-S38</pages><issn>0093-4690</issn><eissn>2042-4582</eissn><abstract>The concept of "big" data is nothing new to archaeologists; we have long made a profession of collecting, organizing, and analyzing a surfeit of data describing everything from minute artifact attributes to landscape-wide environmental characteristics. Regardless of this abundance, we have and continue to confront the self-same problem inherent in "big" data, namely what analyses will actually help us use these data to advance understandings of past human behaviors. With burgeoning remote sensing technologies archaeology faces a new wave of "big" data, but how do these techniques improve our ability to make the inferential leaps to bridge the present to the past and bring new insights forward? We argue that, to date, remote sensing techniques (satellite, aerial, and unpersonned aerial imagery) have been applied somewhat narrowly to mostly high-resolution site-based research in archaeology. To truly unleash the capabilities of these techniques, and expand our capacity for wrangling "big" data to more fully investigate past patterns, we need to conduct iterative analyses incorporating remotely sensed data on bounded archaeological sites and regions and unbounded landscapes. A case study from the Late Precontact (ca. A.D. 1200-1600) period in the northern Great Lakes of North America detailing how such an iterative approach can be initiated is explored here.</abstract><pub>Routledge</pub><doi>10.1080/00934690.2020.1713435</doi><orcidid>https://orcid.org/0000-0002-4472-0144</orcidid><orcidid>https://orcid.org/0000-0002-3272-2767</orcidid><orcidid>https://orcid.org/0000-0002-3505-2906</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0093-4690
ispartof Journal of field archaeology, 2020-02, Vol.45 (sup1), p.S27-S38
issn 0093-4690
2042-4582
language eng
recordid cdi_crossref_primary_10_1080_00934690_2020_1713435
source Taylor & Francis
subjects Food Storage
Great Lakes
Landscape Archaeology
Lidar
Maximum Entropy
Remote Sensing
title Remotely Sensed Big Data and Iterative Approaches to Cultural Feature Detection and Past Landscape Process Analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remotely%20Sensed%20Big%20Data%20and%20Iterative%20Approaches%20to%20Cultural%20Feature%20Detection%20and%20Past%20Landscape%20Process%20Analysis&rft.jtitle=Journal%20of%20field%20archaeology&rft.au=Howey,%20Meghan%20C.%20L.&rft.date=2020-02-20&rft.volume=45&rft.issue=sup1&rft.spage=S27&rft.epage=S38&rft.pages=S27-S38&rft.issn=0093-4690&rft.eissn=2042-4582&rft_id=info:doi/10.1080/00934690.2020.1713435&rft_dat=%3Ccrossref_infor%3E10_1080_00934690_2020_1713435%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c357t-b1bb519f5a5efc783d2784e5ff7e2c03ac6ed46992d203fc7a883268c0db1fe73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true