Loading…

Improving estimation for beta regression models via EM-algorithm and related diagnostic tools

In this paper we propose an alternative procedure for estimating the parameters of the beta regression model. This alternative estimation procedure is based on the EM-algorithm. For this, we took advantage of the stochastic representation of the beta random variable through ratio of independent gamm...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical computation and simulation 2017-09, Vol.87 (14), p.2847-2867
Main Authors: Barreto-Souza, Wagner, Simas, Alexandre B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper we propose an alternative procedure for estimating the parameters of the beta regression model. This alternative estimation procedure is based on the EM-algorithm. For this, we took advantage of the stochastic representation of the beta random variable through ratio of independent gamma random variables. We present a complete approach based on the EM-algorithm. More specifically, this approach includes point and interval estimations and diagnostic tools for detecting outlying observations. As it will be illustrated in this paper, the EM-algorithm approach provides a better estimation of the precision parameter when compared to the direct maximum likelihood (ML) approach. We present the results of Monte Carlo simulations to compare EM-algorithm and direct ML. Finally, two empirical examples illustrate the full EM-algorithm approach for the beta regression model. This paper contains a Supplementary Material.
ISSN:0094-9655
1563-5163
DOI:10.1080/00949655.2017.1350679