Loading…
A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS
The successful design of an observer for inferring the outlet composition from a chemical reactor heavily relies on the goodness of the adopted kinetic rate model (Baratti et al., 1993). On the other hand, often, it is difficult to dispose of a simple, but, exhaustive kinetic model because of the co...
Saved in:
Published in: | Chemical engineering communications 2000-05, Vol.179 (1), p.219-231 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3 |
container_end_page | 231 |
container_issue | 1 |
container_start_page | 219 |
container_title | Chemical engineering communications |
container_volume | 179 |
creator | BARATTI, ROBERTO SERVIDA, ALBERTO |
description | The successful design of an observer for inferring the outlet composition from a chemical reactor heavily relies on the goodness of the adopted kinetic rate model (Baratti et al., 1993). On the other hand, often, it is difficult to dispose of a simple, but, exhaustive kinetic model because of the complexity of the reaction scheme one has to deal with.
In this work, we explore the possibility to represent global (lumped) reaction rate laws by the use of neural network models. The aim is to develop a nonlinear observer (extended Kalman filter, EKF) of an heterogeneous gas-solid reactor that relies on a grey model where the "neural reaction rate" law is integrated within a first principles model. The procedure is outlined for the case of the catalytic oxidation of carbon monoxide over Pt-alumina catalyst. The results show that neural networks (NN) can be effectively used in representing lumped reaction rates since NN are able to capture the essential characteristics of the functional relationship relating the state variables. |
doi_str_mv | 10.1080/00986440008912197 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00986440008912197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00986440008912197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsFYfwN28QPRO5icZcJOm0x9IM5BWwVWYZCZQaRuZBLRvb0rdFXF1F-f7zoWD0COBJwIxPAPIWDAGALEkIZHRFRoRLmjAQyDXaHTKgwHgt-iu6z4ACKWEjFCa4Fzn2TJXSYH1ZK2KN1XgSbJWU6xzvHifFMspXumpygZojvUMpwu1WqZJhguVpBtdrO_RTWN2nXv4vWP0OlObdBFken4Cg5oy1gcmFI3gJqohrERknONMxhYY2NqykBJBpLQRt44707iaGSJEBZJXzZDbsKJjRM69tW-7zrum_PTbvfHHkkB5WqG8WGFworOzPTSt35uv1u9s2ZvjrvWNN4d6211aZf_dD-bLvyb9-_EP10VuOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS</title><source>Taylor and Francis Science and Technology Collection</source><creator>BARATTI, ROBERTO ; SERVIDA, ALBERTO</creator><creatorcontrib>BARATTI, ROBERTO ; SERVIDA, ALBERTO</creatorcontrib><description>The successful design of an observer for inferring the outlet composition from a chemical reactor heavily relies on the goodness of the adopted kinetic rate model (Baratti et al., 1993). On the other hand, often, it is difficult to dispose of a simple, but, exhaustive kinetic model because of the complexity of the reaction scheme one has to deal with.
In this work, we explore the possibility to represent global (lumped) reaction rate laws by the use of neural network models. The aim is to develop a nonlinear observer (extended Kalman filter, EKF) of an heterogeneous gas-solid reactor that relies on a grey model where the "neural reaction rate" law is integrated within a first principles model. The procedure is outlined for the case of the catalytic oxidation of carbon monoxide over Pt-alumina catalyst. The results show that neural networks (NN) can be effectively used in representing lumped reaction rates since NN are able to capture the essential characteristics of the functional relationship relating the state variables.</description><identifier>ISSN: 0098-6445</identifier><identifier>EISSN: 1563-5201</identifier><identifier>DOI: 10.1080/00986440008912197</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>catalytic reactor ; extended Kalman filter ; Hybrid model</subject><ispartof>Chemical engineering communications, 2000-05, Vol.179 (1), p.219-231</ispartof><rights>Copyright Taylor & Francis Group, LLC 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3</citedby><cites>FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>BARATTI, ROBERTO</creatorcontrib><creatorcontrib>SERVIDA, ALBERTO</creatorcontrib><title>A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS</title><title>Chemical engineering communications</title><description>The successful design of an observer for inferring the outlet composition from a chemical reactor heavily relies on the goodness of the adopted kinetic rate model (Baratti et al., 1993). On the other hand, often, it is difficult to dispose of a simple, but, exhaustive kinetic model because of the complexity of the reaction scheme one has to deal with.
In this work, we explore the possibility to represent global (lumped) reaction rate laws by the use of neural network models. The aim is to develop a nonlinear observer (extended Kalman filter, EKF) of an heterogeneous gas-solid reactor that relies on a grey model where the "neural reaction rate" law is integrated within a first principles model. The procedure is outlined for the case of the catalytic oxidation of carbon monoxide over Pt-alumina catalyst. The results show that neural networks (NN) can be effectively used in representing lumped reaction rates since NN are able to capture the essential characteristics of the functional relationship relating the state variables.</description><subject>catalytic reactor</subject><subject>extended Kalman filter</subject><subject>Hybrid model</subject><issn>0098-6445</issn><issn>1563-5201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhQdRsFYfwN28QPRO5icZcJOm0x9IM5BWwVWYZCZQaRuZBLRvb0rdFXF1F-f7zoWD0COBJwIxPAPIWDAGALEkIZHRFRoRLmjAQyDXaHTKgwHgt-iu6z4ACKWEjFCa4Fzn2TJXSYH1ZK2KN1XgSbJWU6xzvHifFMspXumpygZojvUMpwu1WqZJhguVpBtdrO_RTWN2nXv4vWP0OlObdBFken4Cg5oy1gcmFI3gJqohrERknONMxhYY2NqykBJBpLQRt44707iaGSJEBZJXzZDbsKJjRM69tW-7zrum_PTbvfHHkkB5WqG8WGFworOzPTSt35uv1u9s2ZvjrvWNN4d6211aZf_dD-bLvyb9-_EP10VuOQ</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>BARATTI, ROBERTO</creator><creator>SERVIDA, ALBERTO</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000501</creationdate><title>A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS</title><author>BARATTI, ROBERTO ; SERVIDA, ALBERTO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>catalytic reactor</topic><topic>extended Kalman filter</topic><topic>Hybrid model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BARATTI, ROBERTO</creatorcontrib><creatorcontrib>SERVIDA, ALBERTO</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BARATTI, ROBERTO</au><au>SERVIDA, ALBERTO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS</atitle><jtitle>Chemical engineering communications</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>179</volume><issue>1</issue><spage>219</spage><epage>231</epage><pages>219-231</pages><issn>0098-6445</issn><eissn>1563-5201</eissn><abstract>The successful design of an observer for inferring the outlet composition from a chemical reactor heavily relies on the goodness of the adopted kinetic rate model (Baratti et al., 1993). On the other hand, often, it is difficult to dispose of a simple, but, exhaustive kinetic model because of the complexity of the reaction scheme one has to deal with.
In this work, we explore the possibility to represent global (lumped) reaction rate laws by the use of neural network models. The aim is to develop a nonlinear observer (extended Kalman filter, EKF) of an heterogeneous gas-solid reactor that relies on a grey model where the "neural reaction rate" law is integrated within a first principles model. The procedure is outlined for the case of the catalytic oxidation of carbon monoxide over Pt-alumina catalyst. The results show that neural networks (NN) can be effectively used in representing lumped reaction rates since NN are able to capture the essential characteristics of the functional relationship relating the state variables.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/00986440008912197</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0098-6445 |
ispartof | Chemical engineering communications, 2000-05, Vol.179 (1), p.219-231 |
issn | 0098-6445 1563-5201 |
language | eng |
recordid | cdi_crossref_primary_10_1080_00986440008912197 |
source | Taylor and Francis Science and Technology Collection |
subjects | catalytic reactor extended Kalman filter Hybrid model |
title | A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NONLINEAR%20OBSERVER%20BASED%20ON%20HYBRID%20MODELLING%20OF%20CHEMICAL%20REACTORS&rft.jtitle=Chemical%20engineering%20communications&rft.au=BARATTI,%20ROBERTO&rft.date=2000-05-01&rft.volume=179&rft.issue=1&rft.spage=219&rft.epage=231&rft.pages=219-231&rft.issn=0098-6445&rft.eissn=1563-5201&rft_id=info:doi/10.1080/00986440008912197&rft_dat=%3Ccrossref_infor%3E10_1080_00986440008912197%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |