Loading…

A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS

The successful design of an observer for inferring the outlet composition from a chemical reactor heavily relies on the goodness of the adopted kinetic rate model (Baratti et al., 1993). On the other hand, often, it is difficult to dispose of a simple, but, exhaustive kinetic model because of the co...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering communications 2000-05, Vol.179 (1), p.219-231
Main Authors: BARATTI, ROBERTO, SERVIDA, ALBERTO
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3
cites cdi_FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3
container_end_page 231
container_issue 1
container_start_page 219
container_title Chemical engineering communications
container_volume 179
creator BARATTI, ROBERTO
SERVIDA, ALBERTO
description The successful design of an observer for inferring the outlet composition from a chemical reactor heavily relies on the goodness of the adopted kinetic rate model (Baratti et al., 1993). On the other hand, often, it is difficult to dispose of a simple, but, exhaustive kinetic model because of the complexity of the reaction scheme one has to deal with. In this work, we explore the possibility to represent global (lumped) reaction rate laws by the use of neural network models. The aim is to develop a nonlinear observer (extended Kalman filter, EKF) of an heterogeneous gas-solid reactor that relies on a grey model where the "neural reaction rate" law is integrated within a first principles model. The procedure is outlined for the case of the catalytic oxidation of carbon monoxide over Pt-alumina catalyst. The results show that neural networks (NN) can be effectively used in representing lumped reaction rates since NN are able to capture the essential characteristics of the functional relationship relating the state variables.
doi_str_mv 10.1080/00986440008912197
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_00986440008912197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_00986440008912197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsFYfwN28QPRO5icZcJOm0x9IM5BWwVWYZCZQaRuZBLRvb0rdFXF1F-f7zoWD0COBJwIxPAPIWDAGALEkIZHRFRoRLmjAQyDXaHTKgwHgt-iu6z4ACKWEjFCa4Fzn2TJXSYH1ZK2KN1XgSbJWU6xzvHifFMspXumpygZojvUMpwu1WqZJhguVpBtdrO_RTWN2nXv4vWP0OlObdBFken4Cg5oy1gcmFI3gJqohrERknONMxhYY2NqykBJBpLQRt44707iaGSJEBZJXzZDbsKJjRM69tW-7zrum_PTbvfHHkkB5WqG8WGFworOzPTSt35uv1u9s2ZvjrvWNN4d6211aZf_dD-bLvyb9-_EP10VuOQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS</title><source>Taylor and Francis Science and Technology Collection</source><creator>BARATTI, ROBERTO ; SERVIDA, ALBERTO</creator><creatorcontrib>BARATTI, ROBERTO ; SERVIDA, ALBERTO</creatorcontrib><description>The successful design of an observer for inferring the outlet composition from a chemical reactor heavily relies on the goodness of the adopted kinetic rate model (Baratti et al., 1993). On the other hand, often, it is difficult to dispose of a simple, but, exhaustive kinetic model because of the complexity of the reaction scheme one has to deal with. In this work, we explore the possibility to represent global (lumped) reaction rate laws by the use of neural network models. The aim is to develop a nonlinear observer (extended Kalman filter, EKF) of an heterogeneous gas-solid reactor that relies on a grey model where the "neural reaction rate" law is integrated within a first principles model. The procedure is outlined for the case of the catalytic oxidation of carbon monoxide over Pt-alumina catalyst. The results show that neural networks (NN) can be effectively used in representing lumped reaction rates since NN are able to capture the essential characteristics of the functional relationship relating the state variables.</description><identifier>ISSN: 0098-6445</identifier><identifier>EISSN: 1563-5201</identifier><identifier>DOI: 10.1080/00986440008912197</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>catalytic reactor ; extended Kalman filter ; Hybrid model</subject><ispartof>Chemical engineering communications, 2000-05, Vol.179 (1), p.219-231</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3</citedby><cites>FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>BARATTI, ROBERTO</creatorcontrib><creatorcontrib>SERVIDA, ALBERTO</creatorcontrib><title>A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS</title><title>Chemical engineering communications</title><description>The successful design of an observer for inferring the outlet composition from a chemical reactor heavily relies on the goodness of the adopted kinetic rate model (Baratti et al., 1993). On the other hand, often, it is difficult to dispose of a simple, but, exhaustive kinetic model because of the complexity of the reaction scheme one has to deal with. In this work, we explore the possibility to represent global (lumped) reaction rate laws by the use of neural network models. The aim is to develop a nonlinear observer (extended Kalman filter, EKF) of an heterogeneous gas-solid reactor that relies on a grey model where the "neural reaction rate" law is integrated within a first principles model. The procedure is outlined for the case of the catalytic oxidation of carbon monoxide over Pt-alumina catalyst. The results show that neural networks (NN) can be effectively used in representing lumped reaction rates since NN are able to capture the essential characteristics of the functional relationship relating the state variables.</description><subject>catalytic reactor</subject><subject>extended Kalman filter</subject><subject>Hybrid model</subject><issn>0098-6445</issn><issn>1563-5201</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Kw0AUhQdRsFYfwN28QPRO5icZcJOm0x9IM5BWwVWYZCZQaRuZBLRvb0rdFXF1F-f7zoWD0COBJwIxPAPIWDAGALEkIZHRFRoRLmjAQyDXaHTKgwHgt-iu6z4ACKWEjFCa4Fzn2TJXSYH1ZK2KN1XgSbJWU6xzvHifFMspXumpygZojvUMpwu1WqZJhguVpBtdrO_RTWN2nXv4vWP0OlObdBFken4Cg5oy1gcmFI3gJqohrERknONMxhYY2NqykBJBpLQRt44707iaGSJEBZJXzZDbsKJjRM69tW-7zrum_PTbvfHHkkB5WqG8WGFworOzPTSt35uv1u9s2ZvjrvWNN4d6211aZf_dD-bLvyb9-_EP10VuOQ</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>BARATTI, ROBERTO</creator><creator>SERVIDA, ALBERTO</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000501</creationdate><title>A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS</title><author>BARATTI, ROBERTO ; SERVIDA, ALBERTO</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>catalytic reactor</topic><topic>extended Kalman filter</topic><topic>Hybrid model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BARATTI, ROBERTO</creatorcontrib><creatorcontrib>SERVIDA, ALBERTO</creatorcontrib><collection>CrossRef</collection><jtitle>Chemical engineering communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BARATTI, ROBERTO</au><au>SERVIDA, ALBERTO</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS</atitle><jtitle>Chemical engineering communications</jtitle><date>2000-05-01</date><risdate>2000</risdate><volume>179</volume><issue>1</issue><spage>219</spage><epage>231</epage><pages>219-231</pages><issn>0098-6445</issn><eissn>1563-5201</eissn><abstract>The successful design of an observer for inferring the outlet composition from a chemical reactor heavily relies on the goodness of the adopted kinetic rate model (Baratti et al., 1993). On the other hand, often, it is difficult to dispose of a simple, but, exhaustive kinetic model because of the complexity of the reaction scheme one has to deal with. In this work, we explore the possibility to represent global (lumped) reaction rate laws by the use of neural network models. The aim is to develop a nonlinear observer (extended Kalman filter, EKF) of an heterogeneous gas-solid reactor that relies on a grey model where the "neural reaction rate" law is integrated within a first principles model. The procedure is outlined for the case of the catalytic oxidation of carbon monoxide over Pt-alumina catalyst. The results show that neural networks (NN) can be effectively used in representing lumped reaction rates since NN are able to capture the essential characteristics of the functional relationship relating the state variables.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/00986440008912197</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0098-6445
ispartof Chemical engineering communications, 2000-05, Vol.179 (1), p.219-231
issn 0098-6445
1563-5201
language eng
recordid cdi_crossref_primary_10_1080_00986440008912197
source Taylor and Francis Science and Technology Collection
subjects catalytic reactor
extended Kalman filter
Hybrid model
title A NONLINEAR OBSERVER BASED ON HYBRID MODELLING OF CHEMICAL REACTORS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A55%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20NONLINEAR%20OBSERVER%20BASED%20ON%20HYBRID%20MODELLING%20OF%20CHEMICAL%20REACTORS&rft.jtitle=Chemical%20engineering%20communications&rft.au=BARATTI,%20ROBERTO&rft.date=2000-05-01&rft.volume=179&rft.issue=1&rft.spage=219&rft.epage=231&rft.pages=219-231&rft.issn=0098-6445&rft.eissn=1563-5201&rft_id=info:doi/10.1080/00986440008912197&rft_dat=%3Ccrossref_infor%3E10_1080_00986440008912197%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-a26f65a7c02b67aee5498d040dcd42316199d75de5eafec4a166b095bfcd4d2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true