Loading…
Techno-economic analysis of a modified concentrating photovoltaic/organic Rankine cycle system
The combination of concentrating photovoltaic (CPV) and organic Rankine cycle (ORC) systems not only leads to a reduction of photovoltaic (PV) operating temperature, but also leads to an additional electric power production. Increase in the temperature of the PV decreases its operating efficiency, w...
Saved in:
Published in: | International journal of ambient energy 2022-12, Vol.43 (1), p.2026-2038 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The combination of concentrating photovoltaic (CPV) and organic Rankine cycle (ORC) systems not only leads to a reduction of photovoltaic (PV) operating temperature, but also leads to an additional electric power production. Increase in the temperature of the PV decreases its operating efficiency, while increases the ORC efficiency. Therefore, there is an optimum temperature in which the total electricity produced by the combined system will be maximum. In this study, a modified CPV/ORC system is simulated and the optimum operating temperature of the PV panel is determined for different PV efficiencies. The most striking result is that increase in the PV nominal efficiency will result in the selection of a lower temperature for the PV optimum temperature. The results indicate that for the PV panels with efficiencies of 10%, 14%, 18%, and 22% the PV optimum temperature are 145.0°C, 139.8, 132.3, and 121.2°C, respectively. |
---|---|
ISSN: | 0143-0750 2162-8246 |
DOI: | 10.1080/01430750.2020.1721324 |