Loading…

On Minimization of the Number of Heat Exchangers in Water Networks

This article addresses the problem of minimizing the number of heat exchangers for heat recovery as well as the number of mixing and splitting junctions within water networks while maintaining the energy targets determined by the classical pinch analysis. A new systematic approach is proposed to eli...

Full description

Saved in:
Bibliographic Details
Published in:Heat transfer engineering 2004-07, Vol.25 (5), p.30-38
Main Authors: SORIN, MIKHAIL, SAVULESCU, LUCIANA
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article addresses the problem of minimizing the number of heat exchangers for heat recovery as well as the number of mixing and splitting junctions within water networks while maintaining the energy targets determined by the classical pinch analysis. A new systematic approach is proposed to eliminate the kink points and linearize the composite curves. This is based on a systematic strategy that indicates how to mix and split the water streams in order to modify the shape of the initial composite curves. A new graphical thermodynamic rule that avoids the deterioration of energy targets while minimizing the number of heat transfer units as well as the mixing and splitting network complexity has been formalized. This rule permits the control of the procedure of mixing and splitting on the T-H diagram in order to guarantee the pre-established targets. The proposed approach can be used for either the manual design of heat recovery within water networks or the building of a superstructure with a limited number of feasible design options.
ISSN:0145-7632
1521-0537
DOI:10.1080/01457630490459120