Loading…
Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions
Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe 3 O 4 NPs). PANI and PANI-Fe 3 O 4 NPs were used for removal of uranyl ions (UO 2 2+ ) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, S...
Saved in:
Published in: | Separation science and technology 2018-10, Vol.53 (15), p.2486-2499 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463 |
container_end_page | 2499 |
container_issue | 15 |
container_start_page | 2486 |
container_title | Separation science and technology |
container_volume | 53 |
creator | Saghatchi, Hadis Ansari, Reza |
description | Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe
3
O
4
NPs). PANI and PANI-Fe
3
O
4
NPs were used for removal of uranyl ions (UO
2
2+
) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, SEM, BET and XRD techniques. From isotherm investigation, the maximum adsorption capacities (q
m
) were 150.0 and 108.0 mg g
−1
for PANI and PANI-Fe
3
O
4
NPs, respectively. The kinetics and equilibrium adsorptions were well-described by the pseudo-second-order kinetic and Langmuir model, respectively. Thermodynamic studies depicted that the adsorption of uranyl ions by PANI is a spontaneous exothermic process and in the case of PANI-Fe
3
O
4
NPs, adsorption process is endothermic; therefore, the spontaneity is controlled by entropy. |
doi_str_mv | 10.1080/01496395.2018.1459701 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01496395_2018_1459701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111147725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BCHguWvSJm1yc1n8ggUveg5pPiRLm9SkRfrvTdnVo3MZBp53ZngAuMVogxFD9wgTXlecbkqE2QYTyhuEz8AK0xIVtKHkHKwWpligS3CV0gEhxCjnK2C3w9A5JUcXPAwW9vLTm9EpOIRult51zhvopQ8q9ENIbjTQhgiTGWT8C01R-rmDeUrQxtBD-TWZMCWYQjctULoGF1Z2ydyc-hp8PD2-716K_dvz6267L1RVsbHgvEWkNE1bW2m4ZphpRBlrkSJ1y9pa81JrohVRrbWYK21QY5HS3NZKMlJXa3B33DvEkH9IoziEKfp8UpQ4F2makmaKHikVQ0rRWDFE18s4C4zEolT8KhWLUnFSmnMPx5zzWUIvv0PstBjl3IVoswPlkqj-X_EDLUWAsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111147725</pqid></control><display><type>article</type><title>Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Saghatchi, Hadis ; Ansari, Reza</creator><creatorcontrib>Saghatchi, Hadis ; Ansari, Reza</creatorcontrib><description>Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe
3
O
4
NPs). PANI and PANI-Fe
3
O
4
NPs were used for removal of uranyl ions (UO
2
2+
) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, SEM, BET and XRD techniques. From isotherm investigation, the maximum adsorption capacities (q
m
) were 150.0 and 108.0 mg g
−1
for PANI and PANI-Fe
3
O
4
NPs, respectively. The kinetics and equilibrium adsorptions were well-described by the pseudo-second-order kinetic and Langmuir model, respectively. Thermodynamic studies depicted that the adsorption of uranyl ions by PANI is a spontaneous exothermic process and in the case of PANI-Fe
3
O
4
NPs, adsorption process is endothermic; therefore, the spontaneity is controlled by entropy.</description><identifier>ISSN: 0149-6395</identifier><identifier>EISSN: 1520-5754</identifier><identifier>DOI: 10.1080/01496395.2018.1459701</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Adsorption ; Aqueous solutions ; Chemical synthesis ; Endothermic reactions ; Entropy ; Ions ; Iron oxides ; Kinetics ; magnetic nanocomposite ; Nanocomposites ; Nanoparticles ; Organic chemistry ; polyaniline ; Polyanilines ; Removal ; Solutions ; Uranyl (VI)</subject><ispartof>Separation science and technology, 2018-10, Vol.53 (15), p.2486-2499</ispartof><rights>2018 Taylor & Francis 2018</rights><rights>2018 Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463</citedby><cites>FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Saghatchi, Hadis</creatorcontrib><creatorcontrib>Ansari, Reza</creatorcontrib><title>Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions</title><title>Separation science and technology</title><description>Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe
3
O
4
NPs). PANI and PANI-Fe
3
O
4
NPs were used for removal of uranyl ions (UO
2
2+
) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, SEM, BET and XRD techniques. From isotherm investigation, the maximum adsorption capacities (q
m
) were 150.0 and 108.0 mg g
−1
for PANI and PANI-Fe
3
O
4
NPs, respectively. The kinetics and equilibrium adsorptions were well-described by the pseudo-second-order kinetic and Langmuir model, respectively. Thermodynamic studies depicted that the adsorption of uranyl ions by PANI is a spontaneous exothermic process and in the case of PANI-Fe
3
O
4
NPs, adsorption process is endothermic; therefore, the spontaneity is controlled by entropy.</description><subject>Adsorption</subject><subject>Aqueous solutions</subject><subject>Chemical synthesis</subject><subject>Endothermic reactions</subject><subject>Entropy</subject><subject>Ions</subject><subject>Iron oxides</subject><subject>Kinetics</subject><subject>magnetic nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>polyaniline</subject><subject>Polyanilines</subject><subject>Removal</subject><subject>Solutions</subject><subject>Uranyl (VI)</subject><issn>0149-6395</issn><issn>1520-5754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BCHguWvSJm1yc1n8ggUveg5pPiRLm9SkRfrvTdnVo3MZBp53ZngAuMVogxFD9wgTXlecbkqE2QYTyhuEz8AK0xIVtKHkHKwWpligS3CV0gEhxCjnK2C3w9A5JUcXPAwW9vLTm9EpOIRult51zhvopQ8q9ENIbjTQhgiTGWT8C01R-rmDeUrQxtBD-TWZMCWYQjctULoGF1Z2ydyc-hp8PD2-716K_dvz6267L1RVsbHgvEWkNE1bW2m4ZphpRBlrkSJ1y9pa81JrohVRrbWYK21QY5HS3NZKMlJXa3B33DvEkH9IoziEKfp8UpQ4F2makmaKHikVQ0rRWDFE18s4C4zEolT8KhWLUnFSmnMPx5zzWUIvv0PstBjl3IVoswPlkqj-X_EDLUWAsg</recordid><startdate>20181013</startdate><enddate>20181013</enddate><creator>Saghatchi, Hadis</creator><creator>Ansari, Reza</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QH</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20181013</creationdate><title>Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions</title><author>Saghatchi, Hadis ; Ansari, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Aqueous solutions</topic><topic>Chemical synthesis</topic><topic>Endothermic reactions</topic><topic>Entropy</topic><topic>Ions</topic><topic>Iron oxides</topic><topic>Kinetics</topic><topic>magnetic nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>polyaniline</topic><topic>Polyanilines</topic><topic>Removal</topic><topic>Solutions</topic><topic>Uranyl (VI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saghatchi, Hadis</creatorcontrib><creatorcontrib>Ansari, Reza</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Separation science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saghatchi, Hadis</au><au>Ansari, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions</atitle><jtitle>Separation science and technology</jtitle><date>2018-10-13</date><risdate>2018</risdate><volume>53</volume><issue>15</issue><spage>2486</spage><epage>2499</epage><pages>2486-2499</pages><issn>0149-6395</issn><eissn>1520-5754</eissn><abstract>Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe
3
O
4
NPs). PANI and PANI-Fe
3
O
4
NPs were used for removal of uranyl ions (UO
2
2+
) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, SEM, BET and XRD techniques. From isotherm investigation, the maximum adsorption capacities (q
m
) were 150.0 and 108.0 mg g
−1
for PANI and PANI-Fe
3
O
4
NPs, respectively. The kinetics and equilibrium adsorptions were well-described by the pseudo-second-order kinetic and Langmuir model, respectively. Thermodynamic studies depicted that the adsorption of uranyl ions by PANI is a spontaneous exothermic process and in the case of PANI-Fe
3
O
4
NPs, adsorption process is endothermic; therefore, the spontaneity is controlled by entropy.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/01496395.2018.1459701</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0149-6395 |
ispartof | Separation science and technology, 2018-10, Vol.53 (15), p.2486-2499 |
issn | 0149-6395 1520-5754 |
language | eng |
recordid | cdi_crossref_primary_10_1080_01496395_2018_1459701 |
source | Taylor and Francis Science and Technology Collection |
subjects | Adsorption Aqueous solutions Chemical synthesis Endothermic reactions Entropy Ions Iron oxides Kinetics magnetic nanocomposite Nanocomposites Nanoparticles Organic chemistry polyaniline Polyanilines Removal Solutions Uranyl (VI) |
title | Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20magnetic%20polyaniline%20nanocomposite%20for%20separation%20of%20uranyl%20ions%20from%20aqueous%20solutions&rft.jtitle=Separation%20science%20and%20technology&rft.au=Saghatchi,%20Hadis&rft.date=2018-10-13&rft.volume=53&rft.issue=15&rft.spage=2486&rft.epage=2499&rft.pages=2486-2499&rft.issn=0149-6395&rft.eissn=1520-5754&rft_id=info:doi/10.1080/01496395.2018.1459701&rft_dat=%3Cproquest_cross%3E2111147725%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111147725&rft_id=info:pmid/&rfr_iscdi=true |