Loading…

Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions

Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe 3 O 4 NPs). PANI and PANI-Fe 3 O 4 NPs were used for removal of uranyl ions (UO 2 2+ ) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, S...

Full description

Saved in:
Bibliographic Details
Published in:Separation science and technology 2018-10, Vol.53 (15), p.2486-2499
Main Authors: Saghatchi, Hadis, Ansari, Reza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463
cites cdi_FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463
container_end_page 2499
container_issue 15
container_start_page 2486
container_title Separation science and technology
container_volume 53
creator Saghatchi, Hadis
Ansari, Reza
description Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe 3 O 4 NPs). PANI and PANI-Fe 3 O 4 NPs were used for removal of uranyl ions (UO 2 2+ ) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, SEM, BET and XRD techniques. From isotherm investigation, the maximum adsorption capacities (q m ) were 150.0 and 108.0 mg g −1 for PANI and PANI-Fe 3 O 4 NPs, respectively. The kinetics and equilibrium adsorptions were well-described by the pseudo-second-order kinetic and Langmuir model, respectively. Thermodynamic studies depicted that the adsorption of uranyl ions by PANI is a spontaneous exothermic process and in the case of PANI-Fe 3 O 4 NPs, adsorption process is endothermic; therefore, the spontaneity is controlled by entropy.
doi_str_mv 10.1080/01496395.2018.1459701
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01496395_2018_1459701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111147725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BCHguWvSJm1yc1n8ggUveg5pPiRLm9SkRfrvTdnVo3MZBp53ZngAuMVogxFD9wgTXlecbkqE2QYTyhuEz8AK0xIVtKHkHKwWpligS3CV0gEhxCjnK2C3w9A5JUcXPAwW9vLTm9EpOIRult51zhvopQ8q9ENIbjTQhgiTGWT8C01R-rmDeUrQxtBD-TWZMCWYQjctULoGF1Z2ydyc-hp8PD2-716K_dvz6267L1RVsbHgvEWkNE1bW2m4ZphpRBlrkSJ1y9pa81JrohVRrbWYK21QY5HS3NZKMlJXa3B33DvEkH9IoziEKfp8UpQ4F2makmaKHikVQ0rRWDFE18s4C4zEolT8KhWLUnFSmnMPx5zzWUIvv0PstBjl3IVoswPlkqj-X_EDLUWAsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111147725</pqid></control><display><type>article</type><title>Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Saghatchi, Hadis ; Ansari, Reza</creator><creatorcontrib>Saghatchi, Hadis ; Ansari, Reza</creatorcontrib><description>Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe 3 O 4 NPs). PANI and PANI-Fe 3 O 4 NPs were used for removal of uranyl ions (UO 2 2+ ) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, SEM, BET and XRD techniques. From isotherm investigation, the maximum adsorption capacities (q m ) were 150.0 and 108.0 mg g −1 for PANI and PANI-Fe 3 O 4 NPs, respectively. The kinetics and equilibrium adsorptions were well-described by the pseudo-second-order kinetic and Langmuir model, respectively. Thermodynamic studies depicted that the adsorption of uranyl ions by PANI is a spontaneous exothermic process and in the case of PANI-Fe 3 O 4 NPs, adsorption process is endothermic; therefore, the spontaneity is controlled by entropy.</description><identifier>ISSN: 0149-6395</identifier><identifier>EISSN: 1520-5754</identifier><identifier>DOI: 10.1080/01496395.2018.1459701</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Adsorption ; Aqueous solutions ; Chemical synthesis ; Endothermic reactions ; Entropy ; Ions ; Iron oxides ; Kinetics ; magnetic nanocomposite ; Nanocomposites ; Nanoparticles ; Organic chemistry ; polyaniline ; Polyanilines ; Removal ; Solutions ; Uranyl (VI)</subject><ispartof>Separation science and technology, 2018-10, Vol.53 (15), p.2486-2499</ispartof><rights>2018 Taylor &amp; Francis 2018</rights><rights>2018 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463</citedby><cites>FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Saghatchi, Hadis</creatorcontrib><creatorcontrib>Ansari, Reza</creatorcontrib><title>Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions</title><title>Separation science and technology</title><description>Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe 3 O 4 NPs). PANI and PANI-Fe 3 O 4 NPs were used for removal of uranyl ions (UO 2 2+ ) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, SEM, BET and XRD techniques. From isotherm investigation, the maximum adsorption capacities (q m ) were 150.0 and 108.0 mg g −1 for PANI and PANI-Fe 3 O 4 NPs, respectively. The kinetics and equilibrium adsorptions were well-described by the pseudo-second-order kinetic and Langmuir model, respectively. Thermodynamic studies depicted that the adsorption of uranyl ions by PANI is a spontaneous exothermic process and in the case of PANI-Fe 3 O 4 NPs, adsorption process is endothermic; therefore, the spontaneity is controlled by entropy.</description><subject>Adsorption</subject><subject>Aqueous solutions</subject><subject>Chemical synthesis</subject><subject>Endothermic reactions</subject><subject>Entropy</subject><subject>Ions</subject><subject>Iron oxides</subject><subject>Kinetics</subject><subject>magnetic nanocomposite</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Organic chemistry</subject><subject>polyaniline</subject><subject>Polyanilines</subject><subject>Removal</subject><subject>Solutions</subject><subject>Uranyl (VI)</subject><issn>0149-6395</issn><issn>1520-5754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BCHguWvSJm1yc1n8ggUveg5pPiRLm9SkRfrvTdnVo3MZBp53ZngAuMVogxFD9wgTXlecbkqE2QYTyhuEz8AK0xIVtKHkHKwWpligS3CV0gEhxCjnK2C3w9A5JUcXPAwW9vLTm9EpOIRult51zhvopQ8q9ENIbjTQhgiTGWT8C01R-rmDeUrQxtBD-TWZMCWYQjctULoGF1Z2ydyc-hp8PD2-716K_dvz6267L1RVsbHgvEWkNE1bW2m4ZphpRBlrkSJ1y9pa81JrohVRrbWYK21QY5HS3NZKMlJXa3B33DvEkH9IoziEKfp8UpQ4F2makmaKHikVQ0rRWDFE18s4C4zEolT8KhWLUnFSmnMPx5zzWUIvv0PstBjl3IVoswPlkqj-X_EDLUWAsg</recordid><startdate>20181013</startdate><enddate>20181013</enddate><creator>Saghatchi, Hadis</creator><creator>Ansari, Reza</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QH</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20181013</creationdate><title>Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions</title><author>Saghatchi, Hadis ; Ansari, Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adsorption</topic><topic>Aqueous solutions</topic><topic>Chemical synthesis</topic><topic>Endothermic reactions</topic><topic>Entropy</topic><topic>Ions</topic><topic>Iron oxides</topic><topic>Kinetics</topic><topic>magnetic nanocomposite</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Organic chemistry</topic><topic>polyaniline</topic><topic>Polyanilines</topic><topic>Removal</topic><topic>Solutions</topic><topic>Uranyl (VI)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saghatchi, Hadis</creatorcontrib><creatorcontrib>Ansari, Reza</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Separation science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saghatchi, Hadis</au><au>Ansari, Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions</atitle><jtitle>Separation science and technology</jtitle><date>2018-10-13</date><risdate>2018</risdate><volume>53</volume><issue>15</issue><spage>2486</spage><epage>2499</epage><pages>2486-2499</pages><issn>0149-6395</issn><eissn>1520-5754</eissn><abstract>Polyaniline (PANI) was synthesized chemically, and then modified with magnetic iron oxide nanoparticles (Fe 3 O 4 NPs). PANI and PANI-Fe 3 O 4 NPs were used for removal of uranyl ions (UO 2 2+ ) from aqueous solutions using a batch system. The synthesized adsorbents were characterized using FT-IR, SEM, BET and XRD techniques. From isotherm investigation, the maximum adsorption capacities (q m ) were 150.0 and 108.0 mg g −1 for PANI and PANI-Fe 3 O 4 NPs, respectively. The kinetics and equilibrium adsorptions were well-described by the pseudo-second-order kinetic and Langmuir model, respectively. Thermodynamic studies depicted that the adsorption of uranyl ions by PANI is a spontaneous exothermic process and in the case of PANI-Fe 3 O 4 NPs, adsorption process is endothermic; therefore, the spontaneity is controlled by entropy.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01496395.2018.1459701</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0149-6395
ispartof Separation science and technology, 2018-10, Vol.53 (15), p.2486-2499
issn 0149-6395
1520-5754
language eng
recordid cdi_crossref_primary_10_1080_01496395_2018_1459701
source Taylor and Francis Science and Technology Collection
subjects Adsorption
Aqueous solutions
Chemical synthesis
Endothermic reactions
Entropy
Ions
Iron oxides
Kinetics
magnetic nanocomposite
Nanocomposites
Nanoparticles
Organic chemistry
polyaniline
Polyanilines
Removal
Solutions
Uranyl (VI)
title Application of magnetic polyaniline nanocomposite for separation of uranyl ions from aqueous solutions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A18%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20magnetic%20polyaniline%20nanocomposite%20for%20separation%20of%20uranyl%20ions%20from%20aqueous%20solutions&rft.jtitle=Separation%20science%20and%20technology&rft.au=Saghatchi,%20Hadis&rft.date=2018-10-13&rft.volume=53&rft.issue=15&rft.spage=2486&rft.epage=2499&rft.pages=2486-2499&rft.issn=0149-6395&rft.eissn=1520-5754&rft_id=info:doi/10.1080/01496395.2018.1459701&rft_dat=%3Cproquest_cross%3E2111147725%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-99b042e7b6fae9d818d0588b0c46b8b6d92dd4dc4cbff19cde07f0cd9f6ca8463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111147725&rft_id=info:pmid/&rfr_iscdi=true