Loading…
Desalination membranes by deposition of polyamide on polyvinylidene fluoride supports using the automated layer-by-layer technique
Thin-film composite (TFC) membranes with a polyamide (PA) active layer are the industry standard in desalination applications. The layer-by-layer (LbL) approach provides more precise control over the properties of this active PA layer. The automated spin-assisted LbL version of this approach then mi...
Saved in:
Published in: | Separation science and technology 2022-05, Vol.57 (7), p.1119-1127 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-a7b509b53e651dbcedee198f84a11b0a3ac5edf543894232b9bc255d781089f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-a7b509b53e651dbcedee198f84a11b0a3ac5edf543894232b9bc255d781089f33 |
container_end_page | 1127 |
container_issue | 7 |
container_start_page | 1119 |
container_title | Separation science and technology |
container_volume | 57 |
creator | Krizak, Daniel Abbaszadeh, Mahsa Kundu, Santanu |
description | Thin-film composite (TFC) membranes with a polyamide (PA) active layer are the industry standard in desalination applications. The layer-by-layer (LbL) approach provides more precise control over the properties of this active PA layer. The automated spin-assisted LbL version of this approach then minimizes human error and improves repeatability. To improve durability of these membranes, more robust supports are desired, such as polyvinylidene fluoride (PVDF). The use of the LbL technique on this support requires an interlayer to enable the deposition onto the PVDF. In this case, levodopa was utilized to coat the PVDF prior to deposition of the PA layer. The membranes exhibited moderate permeability and higher selectivity for sodium chloride under typical brackish water conditions compared to commercially available NF membranes. This novel interlayer further expands on the automated spin assisted LbL approach, enabling deposition of PA onto a support. |
doi_str_mv | 10.1080/01496395.2021.1962349 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01496395_2021_1962349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2635334239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-a7b509b53e651dbcedee198f84a11b0a3ac5edf543894232b9bc255d781089f33</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78BCHguWvSNLvNTfEbFrzoOSTtRCNtUpNU6dVfbuquV08z78z7zsCD0BklS0pqckFoJVZM8GVJSrqkYlWySuyhBeUlKfiaV_toMXuK2XSIjmJ8J4TUXIgF-r6BqDrrVLLe4R56HZSDiPWEWxh8tL9zb_Dgu0n1tgWc9Sw-rZu6rB1g040-zKs4DoMPKeIxWveK0xtgNSbfqwQt7tQEodBT8dvgBM2bsx8jnKADo7oIp7t6jF7ubp-vH4rN0_3j9dWmaBirU6HWmhOhOYMVp61uoAWgojZ1pSjVRDHVcGgNr1gtqpKVWuim5Lxd1xmSMIwdo_Pt3SH4_DYm-e7H4PJLWa4YZyynRHbxrasJPsYARg7B9ipMkhI545Z_uOWMW-5w59zlNmed8aFXXz50rUxq6nwwmWljo2T_n_gBFA6Keg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2635334239</pqid></control><display><type>article</type><title>Desalination membranes by deposition of polyamide on polyvinylidene fluoride supports using the automated layer-by-layer technique</title><source>Taylor and Francis Science and Technology Collection</source><creator>Krizak, Daniel ; Abbaszadeh, Mahsa ; Kundu, Santanu</creator><creatorcontrib>Krizak, Daniel ; Abbaszadeh, Mahsa ; Kundu, Santanu</creatorcontrib><description>Thin-film composite (TFC) membranes with a polyamide (PA) active layer are the industry standard in desalination applications. The layer-by-layer (LbL) approach provides more precise control over the properties of this active PA layer. The automated spin-assisted LbL version of this approach then minimizes human error and improves repeatability. To improve durability of these membranes, more robust supports are desired, such as polyvinylidene fluoride (PVDF). The use of the LbL technique on this support requires an interlayer to enable the deposition onto the PVDF. In this case, levodopa was utilized to coat the PVDF prior to deposition of the PA layer. The membranes exhibited moderate permeability and higher selectivity for sodium chloride under typical brackish water conditions compared to commercially available NF membranes. This novel interlayer further expands on the automated spin assisted LbL approach, enabling deposition of PA onto a support.</description><identifier>ISSN: 0149-6395</identifier><identifier>EISSN: 1520-5754</identifier><identifier>DOI: 10.1080/01496395.2021.1962349</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Automated LBL ; Automation ; Brackish water ; Deposition ; Desalination ; Durability ; Fluorides ; Human error ; Industry standards ; Interlayers ; Layer-by-Layer (LBL) ; Levodopa ; Membrane permeability ; Membranes ; Permeability ; Polyamide (PA) ; Polyamide resins ; Polyamides ; Polyvinylidene fluoride (PVDF) ; Polyvinylidene fluorides ; Selectivity ; Sodium ; Sodium chloride ; Thin films ; Water desalting</subject><ispartof>Separation science and technology, 2022-05, Vol.57 (7), p.1119-1127</ispartof><rights>2021 Taylor & Francis Group, LLC 2021</rights><rights>2021 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-a7b509b53e651dbcedee198f84a11b0a3ac5edf543894232b9bc255d781089f33</citedby><cites>FETCH-LOGICAL-c338t-a7b509b53e651dbcedee198f84a11b0a3ac5edf543894232b9bc255d781089f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Krizak, Daniel</creatorcontrib><creatorcontrib>Abbaszadeh, Mahsa</creatorcontrib><creatorcontrib>Kundu, Santanu</creatorcontrib><title>Desalination membranes by deposition of polyamide on polyvinylidene fluoride supports using the automated layer-by-layer technique</title><title>Separation science and technology</title><description>Thin-film composite (TFC) membranes with a polyamide (PA) active layer are the industry standard in desalination applications. The layer-by-layer (LbL) approach provides more precise control over the properties of this active PA layer. The automated spin-assisted LbL version of this approach then minimizes human error and improves repeatability. To improve durability of these membranes, more robust supports are desired, such as polyvinylidene fluoride (PVDF). The use of the LbL technique on this support requires an interlayer to enable the deposition onto the PVDF. In this case, levodopa was utilized to coat the PVDF prior to deposition of the PA layer. The membranes exhibited moderate permeability and higher selectivity for sodium chloride under typical brackish water conditions compared to commercially available NF membranes. This novel interlayer further expands on the automated spin assisted LbL approach, enabling deposition of PA onto a support.</description><subject>Automated LBL</subject><subject>Automation</subject><subject>Brackish water</subject><subject>Deposition</subject><subject>Desalination</subject><subject>Durability</subject><subject>Fluorides</subject><subject>Human error</subject><subject>Industry standards</subject><subject>Interlayers</subject><subject>Layer-by-Layer (LBL)</subject><subject>Levodopa</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Permeability</subject><subject>Polyamide (PA)</subject><subject>Polyamide resins</subject><subject>Polyamides</subject><subject>Polyvinylidene fluoride (PVDF)</subject><subject>Polyvinylidene fluorides</subject><subject>Selectivity</subject><subject>Sodium</subject><subject>Sodium chloride</subject><subject>Thin films</subject><subject>Water desalting</subject><issn>0149-6395</issn><issn>1520-5754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78BCHguWvSNLvNTfEbFrzoOSTtRCNtUpNU6dVfbuquV08z78z7zsCD0BklS0pqckFoJVZM8GVJSrqkYlWySuyhBeUlKfiaV_toMXuK2XSIjmJ8J4TUXIgF-r6BqDrrVLLe4R56HZSDiPWEWxh8tL9zb_Dgu0n1tgWc9Sw-rZu6rB1g040-zKs4DoMPKeIxWveK0xtgNSbfqwQt7tQEodBT8dvgBM2bsx8jnKADo7oIp7t6jF7ubp-vH4rN0_3j9dWmaBirU6HWmhOhOYMVp61uoAWgojZ1pSjVRDHVcGgNr1gtqpKVWuim5Lxd1xmSMIwdo_Pt3SH4_DYm-e7H4PJLWa4YZyynRHbxrasJPsYARg7B9ipMkhI545Z_uOWMW-5w59zlNmed8aFXXz50rUxq6nwwmWljo2T_n_gBFA6Keg</recordid><startdate>20220503</startdate><enddate>20220503</enddate><creator>Krizak, Daniel</creator><creator>Abbaszadeh, Mahsa</creator><creator>Kundu, Santanu</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QH</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>20220503</creationdate><title>Desalination membranes by deposition of polyamide on polyvinylidene fluoride supports using the automated layer-by-layer technique</title><author>Krizak, Daniel ; Abbaszadeh, Mahsa ; Kundu, Santanu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-a7b509b53e651dbcedee198f84a11b0a3ac5edf543894232b9bc255d781089f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automated LBL</topic><topic>Automation</topic><topic>Brackish water</topic><topic>Deposition</topic><topic>Desalination</topic><topic>Durability</topic><topic>Fluorides</topic><topic>Human error</topic><topic>Industry standards</topic><topic>Interlayers</topic><topic>Layer-by-Layer (LBL)</topic><topic>Levodopa</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Permeability</topic><topic>Polyamide (PA)</topic><topic>Polyamide resins</topic><topic>Polyamides</topic><topic>Polyvinylidene fluoride (PVDF)</topic><topic>Polyvinylidene fluorides</topic><topic>Selectivity</topic><topic>Sodium</topic><topic>Sodium chloride</topic><topic>Thin films</topic><topic>Water desalting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krizak, Daniel</creatorcontrib><creatorcontrib>Abbaszadeh, Mahsa</creatorcontrib><creatorcontrib>Kundu, Santanu</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Separation science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krizak, Daniel</au><au>Abbaszadeh, Mahsa</au><au>Kundu, Santanu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Desalination membranes by deposition of polyamide on polyvinylidene fluoride supports using the automated layer-by-layer technique</atitle><jtitle>Separation science and technology</jtitle><date>2022-05-03</date><risdate>2022</risdate><volume>57</volume><issue>7</issue><spage>1119</spage><epage>1127</epage><pages>1119-1127</pages><issn>0149-6395</issn><eissn>1520-5754</eissn><abstract>Thin-film composite (TFC) membranes with a polyamide (PA) active layer are the industry standard in desalination applications. The layer-by-layer (LbL) approach provides more precise control over the properties of this active PA layer. The automated spin-assisted LbL version of this approach then minimizes human error and improves repeatability. To improve durability of these membranes, more robust supports are desired, such as polyvinylidene fluoride (PVDF). The use of the LbL technique on this support requires an interlayer to enable the deposition onto the PVDF. In this case, levodopa was utilized to coat the PVDF prior to deposition of the PA layer. The membranes exhibited moderate permeability and higher selectivity for sodium chloride under typical brackish water conditions compared to commercially available NF membranes. This novel interlayer further expands on the automated spin assisted LbL approach, enabling deposition of PA onto a support.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/01496395.2021.1962349</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0149-6395 |
ispartof | Separation science and technology, 2022-05, Vol.57 (7), p.1119-1127 |
issn | 0149-6395 1520-5754 |
language | eng |
recordid | cdi_crossref_primary_10_1080_01496395_2021_1962349 |
source | Taylor and Francis Science and Technology Collection |
subjects | Automated LBL Automation Brackish water Deposition Desalination Durability Fluorides Human error Industry standards Interlayers Layer-by-Layer (LBL) Levodopa Membrane permeability Membranes Permeability Polyamide (PA) Polyamide resins Polyamides Polyvinylidene fluoride (PVDF) Polyvinylidene fluorides Selectivity Sodium Sodium chloride Thin films Water desalting |
title | Desalination membranes by deposition of polyamide on polyvinylidene fluoride supports using the automated layer-by-layer technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Desalination%20membranes%20by%20deposition%20of%20polyamide%20on%20polyvinylidene%20fluoride%20supports%20using%20the%20automated%20layer-by-layer%20technique&rft.jtitle=Separation%20science%20and%20technology&rft.au=Krizak,%20Daniel&rft.date=2022-05-03&rft.volume=57&rft.issue=7&rft.spage=1119&rft.epage=1127&rft.pages=1119-1127&rft.issn=0149-6395&rft.eissn=1520-5754&rft_id=info:doi/10.1080/01496395.2021.1962349&rft_dat=%3Cproquest_cross%3E2635334239%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-a7b509b53e651dbcedee198f84a11b0a3ac5edf543894232b9bc255d781089f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2635334239&rft_id=info:pmid/&rfr_iscdi=true |