Loading…

Systematic Statistics Used for Data Compression in Space Telemetry

The need for data compression, a consequence of the demands made on the telemetry system of a space vehicle, prompts consideration of the use of sample quantiles in estimating population parameters and obtaining tests of goodness of fit for large samples. In this paper optimal unbiased estimators of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Statistical Association 1965-03, Vol.60 (309), p.97-133
Main Authors: Eisenberger, Isidore, Posner, Edward C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-49bbea6de718e5d988f3a455b6339ed3c2f05cd8a2386705e4129c2be2e4a5213
cites cdi_FETCH-LOGICAL-c349t-49bbea6de718e5d988f3a455b6339ed3c2f05cd8a2386705e4129c2be2e4a5213
container_end_page 133
container_issue 309
container_start_page 97
container_title Journal of the American Statistical Association
container_volume 60
creator Eisenberger, Isidore
Posner, Edward C.
description The need for data compression, a consequence of the demands made on the telemetry system of a space vehicle, prompts consideration of the use of sample quantiles in estimating population parameters and obtaining tests of goodness of fit for large samples. In this paper optimal unbiased estimators of the mean and standard deviation are given using up to twenty quantiles when the parent population is normal. Moreover, the estimators are relatively insensitive to deviations from normality. A distribution-free goodness-of-fit test is presented based on the sum of the squares of four quantiles after an orthogonal transformation to independent normal deviates. If a frequency function is of the form f(x; p) = pf 1 (x) + (1 - p) f 2 (x), 0 < p < 1, where f 1 and f 2 are normal frequency functions, the distribution is likely to be bimodal. Another goodness-of-fit test is obtained using four quantiles, which is likely to have considerable power with a null hypothesis of normality and the alternative hypothesis of bimodality. The "data compression ratios" obtained with the use of a quantile system can be on the order of 100 to 1.
doi_str_mv 10.1080/01621459.1965.10480778
format article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_1965_10480778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2283140</jstor_id><sourcerecordid>2283140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-49bbea6de718e5d988f3a455b6339ed3c2f05cd8a2386705e4129c2be2e4a5213</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKt_QRb0ujWfm-RY6ycUPLQFbyG7Owtbdjc1SZH-e1PWgjfnMsPwvDPwIHRL8IxghR8wKSjhQs-ILkRacYWlVGdoQgSTOZX88xxNjlB-pC7RVQhbnEoqNUGPq0OI0NvYVtkqphbSFLJNgDprnM-ebLTZwvU7DyG0bsjaIVvtbAXZGjroIfrDNbpobBfg5rdP0ebleb14y5cfr--L-TKvGNcx57oswRY1SKJA1FqphlkuRFkwpqFmFW2wqGplKVOFxAI4obqiJVDgVlDCpuhuvLvz7msPIZqt2_shvTSEESJ1wYlOVDFSlXcheGjMzre99QdDsDn6Midf5ujLnHyl4P0Y3Ibo_N8UZVgaShUjHCdsPmLtkPz09tv5rjbRHjrnG2-Hqg2G_fPqB9xzfJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1311796419</pqid></control><display><type>article</type><title>Systematic Statistics Used for Data Compression in Space Telemetry</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Eisenberger, Isidore ; Posner, Edward C.</creator><creatorcontrib>Eisenberger, Isidore ; Posner, Edward C.</creatorcontrib><description>The need for data compression, a consequence of the demands made on the telemetry system of a space vehicle, prompts consideration of the use of sample quantiles in estimating population parameters and obtaining tests of goodness of fit for large samples. In this paper optimal unbiased estimators of the mean and standard deviation are given using up to twenty quantiles when the parent population is normal. Moreover, the estimators are relatively insensitive to deviations from normality. A distribution-free goodness-of-fit test is presented based on the sum of the squares of four quantiles after an orthogonal transformation to independent normal deviates. If a frequency function is of the form f(x; p) = pf 1 (x) + (1 - p) f 2 (x), 0 &lt; p &lt; 1, where f 1 and f 2 are normal frequency functions, the distribution is likely to be bimodal. Another goodness-of-fit test is obtained using four quantiles, which is likely to have considerable power with a null hypothesis of normality and the alternative hypothesis of bimodality. The "data compression ratios" obtained with the use of a quantile system can be on the order of 100 to 1.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.1965.10480778</identifier><language>eng</language><publisher>Washington: Taylor &amp; Francis Group</publisher><subject>Data compression ; Density distributions ; Estimators ; Estimators for the mean ; Gaussian distributions ; Population distributions ; Quantum efficiency ; Standard deviation ; Statistical discrepancies ; Telemetry</subject><ispartof>Journal of the American Statistical Association, 1965-03, Vol.60 (309), p.97-133</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 1965</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-49bbea6de718e5d988f3a455b6339ed3c2f05cd8a2386705e4129c2be2e4a5213</citedby><cites>FETCH-LOGICAL-c349t-49bbea6de718e5d988f3a455b6339ed3c2f05cd8a2386705e4129c2be2e4a5213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2283140$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2283140$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,27900,27901,58212,58445</link.rule.ids></links><search><creatorcontrib>Eisenberger, Isidore</creatorcontrib><creatorcontrib>Posner, Edward C.</creatorcontrib><title>Systematic Statistics Used for Data Compression in Space Telemetry</title><title>Journal of the American Statistical Association</title><description>The need for data compression, a consequence of the demands made on the telemetry system of a space vehicle, prompts consideration of the use of sample quantiles in estimating population parameters and obtaining tests of goodness of fit for large samples. In this paper optimal unbiased estimators of the mean and standard deviation are given using up to twenty quantiles when the parent population is normal. Moreover, the estimators are relatively insensitive to deviations from normality. A distribution-free goodness-of-fit test is presented based on the sum of the squares of four quantiles after an orthogonal transformation to independent normal deviates. If a frequency function is of the form f(x; p) = pf 1 (x) + (1 - p) f 2 (x), 0 &lt; p &lt; 1, where f 1 and f 2 are normal frequency functions, the distribution is likely to be bimodal. Another goodness-of-fit test is obtained using four quantiles, which is likely to have considerable power with a null hypothesis of normality and the alternative hypothesis of bimodality. The "data compression ratios" obtained with the use of a quantile system can be on the order of 100 to 1.</description><subject>Data compression</subject><subject>Density distributions</subject><subject>Estimators</subject><subject>Estimators for the mean</subject><subject>Gaussian distributions</subject><subject>Population distributions</subject><subject>Quantum efficiency</subject><subject>Standard deviation</subject><subject>Statistical discrepancies</subject><subject>Telemetry</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1965</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKt_QRb0ujWfm-RY6ycUPLQFbyG7Owtbdjc1SZH-e1PWgjfnMsPwvDPwIHRL8IxghR8wKSjhQs-ILkRacYWlVGdoQgSTOZX88xxNjlB-pC7RVQhbnEoqNUGPq0OI0NvYVtkqphbSFLJNgDprnM-ebLTZwvU7DyG0bsjaIVvtbAXZGjroIfrDNbpobBfg5rdP0ebleb14y5cfr--L-TKvGNcx57oswRY1SKJA1FqphlkuRFkwpqFmFW2wqGplKVOFxAI4obqiJVDgVlDCpuhuvLvz7msPIZqt2_shvTSEESJ1wYlOVDFSlXcheGjMzre99QdDsDn6Midf5ujLnHyl4P0Y3Ibo_N8UZVgaShUjHCdsPmLtkPz09tv5rjbRHjrnG2-Hqg2G_fPqB9xzfJw</recordid><startdate>19650301</startdate><enddate>19650301</enddate><creator>Eisenberger, Isidore</creator><creator>Posner, Edward C.</creator><general>Taylor &amp; Francis Group</general><general>American Statistical Association</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JRZRW</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19650301</creationdate><title>Systematic Statistics Used for Data Compression in Space Telemetry</title><author>Eisenberger, Isidore ; Posner, Edward C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-49bbea6de718e5d988f3a455b6339ed3c2f05cd8a2386705e4129c2be2e4a5213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1965</creationdate><topic>Data compression</topic><topic>Density distributions</topic><topic>Estimators</topic><topic>Estimators for the mean</topic><topic>Gaussian distributions</topic><topic>Population distributions</topic><topic>Quantum efficiency</topic><topic>Standard deviation</topic><topic>Statistical discrepancies</topic><topic>Telemetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eisenberger, Isidore</creatorcontrib><creatorcontrib>Posner, Edward C.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 35</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eisenberger, Isidore</au><au>Posner, Edward C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systematic Statistics Used for Data Compression in Space Telemetry</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>1965-03-01</date><risdate>1965</risdate><volume>60</volume><issue>309</issue><spage>97</spage><epage>133</epage><pages>97-133</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>The need for data compression, a consequence of the demands made on the telemetry system of a space vehicle, prompts consideration of the use of sample quantiles in estimating population parameters and obtaining tests of goodness of fit for large samples. In this paper optimal unbiased estimators of the mean and standard deviation are given using up to twenty quantiles when the parent population is normal. Moreover, the estimators are relatively insensitive to deviations from normality. A distribution-free goodness-of-fit test is presented based on the sum of the squares of four quantiles after an orthogonal transformation to independent normal deviates. If a frequency function is of the form f(x; p) = pf 1 (x) + (1 - p) f 2 (x), 0 &lt; p &lt; 1, where f 1 and f 2 are normal frequency functions, the distribution is likely to be bimodal. Another goodness-of-fit test is obtained using four quantiles, which is likely to have considerable power with a null hypothesis of normality and the alternative hypothesis of bimodality. The "data compression ratios" obtained with the use of a quantile system can be on the order of 100 to 1.</abstract><cop>Washington</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01621459.1965.10480778</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0162-1459
ispartof Journal of the American Statistical Association, 1965-03, Vol.60 (309), p.97-133
issn 0162-1459
1537-274X
language eng
recordid cdi_crossref_primary_10_1080_01621459_1965_10480778
source JSTOR Archival Journals and Primary Sources Collection
subjects Data compression
Density distributions
Estimators
Estimators for the mean
Gaussian distributions
Population distributions
Quantum efficiency
Standard deviation
Statistical discrepancies
Telemetry
title Systematic Statistics Used for Data Compression in Space Telemetry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T07%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systematic%20Statistics%20Used%20for%20Data%20Compression%20in%20Space%20Telemetry&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Eisenberger,%20Isidore&rft.date=1965-03-01&rft.volume=60&rft.issue=309&rft.spage=97&rft.epage=133&rft.pages=97-133&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.1965.10480778&rft_dat=%3Cjstor_cross%3E2283140%3C/jstor_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-49bbea6de718e5d988f3a455b6339ed3c2f05cd8a2386705e4129c2be2e4a5213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1311796419&rft_id=info:pmid/&rft_jstor_id=2283140&rfr_iscdi=true