Loading…
Semi-Supervised Linear Regression
We study a regression problem where for some part of the data we observe both the label variable (Y) and the predictors ( ), while for other part of the data only the predictors are given. Such a problem arises, for example, when observations of the label variable are costly and may require a skille...
Saved in:
Published in: | Journal of the American Statistical Association 2022-10, Vol.117 (540), p.2238-2251 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-af5c9a71430c551b927eacb1bbc4350a77c9b1b26f832d8717206bd2a0f502c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-af5c9a71430c551b927eacb1bbc4350a77c9b1b26f832d8717206bd2a0f502c13 |
container_end_page | 2251 |
container_issue | 540 |
container_start_page | 2238 |
container_title | Journal of the American Statistical Association |
container_volume | 117 |
creator | Azriel, David Brown, Lawrence D. Sklar, Michael Berk, Richard Buja, Andreas Zhao, Linda |
description | We study a regression problem where for some part of the data we observe both the label variable (Y) and the predictors (
), while for other part of the data only the predictors are given. Such a problem arises, for example, when observations of the label variable are costly and may require a skilled human agent. When the conditional expectation
is not exactly linear, one can consider the best linear approximation to the conditional expectation, which can be estimated consistently by the least-square estimates (LSE). The latter depends only on the labeled data. We suggest improved alternative estimates to the LSE that use also the unlabeled data. Our estimation method can be easily implemented and has simply described asymptotic properties. The new estimates asymptotically dominate the usual standard procedures under certain non-linearity condition of
; otherwise, they are asymptotically equivalent. The performance of the new estimator for small sample size is investigated in an extensive simulation study. A real data example of inferring homeless population is used to illustrate the new methodology. |
doi_str_mv | 10.1080/01621459.2021.1915320 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01621459_2021_1915320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2760342998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-af5c9a71430c551b927eacb1bbc4350a77c9b1b26f832d8717206bd2a0f502c13</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QZh43XpO0jTNnTL8goHgFLwLaZpIxtbMpFP2723pvPXcvBx43nPgIeQSIUeo4AawpFhwmVOgmKNEzigckUmfIqOi-Dgmk4HJBuiUnKW0gn5EVU3I1dJufLbcbW389sk2s4VvrY6zV_sZbUo-tOfkxOl1sheHnJL3h_u3-VO2eHl8nt8tMlNw7DLtuJFaYMHAcI61pMJqU2Ndm4Jx0EIY2W-0dBWjTSVQUCjrhmpwHKhBNiXX491tDF87mzq1CrvY9i8VFSWwgkpZ9RQfKRNDStE6tY1-o-NeIajBhvqzoQYb6mCj792OPd-6EDf6J8R1ozq9X4foom6NT4r9f-IXke5kFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760342998</pqid></control><display><type>article</type><title>Semi-Supervised Linear Regression</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>Taylor and Francis Science and Technology Collection</source><creator>Azriel, David ; Brown, Lawrence D. ; Sklar, Michael ; Berk, Richard ; Buja, Andreas ; Zhao, Linda</creator><creatorcontrib>Azriel, David ; Brown, Lawrence D. ; Sklar, Michael ; Berk, Richard ; Buja, Andreas ; Zhao, Linda</creatorcontrib><description>We study a regression problem where for some part of the data we observe both the label variable (Y) and the predictors (
), while for other part of the data only the predictors are given. Such a problem arises, for example, when observations of the label variable are costly and may require a skilled human agent. When the conditional expectation
is not exactly linear, one can consider the best linear approximation to the conditional expectation, which can be estimated consistently by the least-square estimates (LSE). The latter depends only on the labeled data. We suggest improved alternative estimates to the LSE that use also the unlabeled data. Our estimation method can be easily implemented and has simply described asymptotic properties. The new estimates asymptotically dominate the usual standard procedures under certain non-linearity condition of
; otherwise, they are asymptotically equivalent. The performance of the new estimator for small sample size is investigated in an extensive simulation study. A real data example of inferring homeless population is used to illustrate the new methodology.</description><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2021.1915320</identifier><language>eng</language><publisher>Alexandria: Taylor & Francis</publisher><subject>Asymptotic methods ; Asymptotic properties ; Estimates ; Homeless people ; Linear regression ; Misspecified models ; Regression analysis ; Semi-supervised learning ; Simulation ; Statistical methods ; Statistics</subject><ispartof>Journal of the American Statistical Association, 2022-10, Vol.117 (540), p.2238-2251</ispartof><rights>2021 American Statistical Association 2021</rights><rights>2021 American Statistical Association</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-af5c9a71430c551b927eacb1bbc4350a77c9b1b26f832d8717206bd2a0f502c13</citedby><cites>FETCH-LOGICAL-c451t-af5c9a71430c551b927eacb1bbc4350a77c9b1b26f832d8717206bd2a0f502c13</cites><orcidid>0000-0002-9569-576X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,33223</link.rule.ids></links><search><creatorcontrib>Azriel, David</creatorcontrib><creatorcontrib>Brown, Lawrence D.</creatorcontrib><creatorcontrib>Sklar, Michael</creatorcontrib><creatorcontrib>Berk, Richard</creatorcontrib><creatorcontrib>Buja, Andreas</creatorcontrib><creatorcontrib>Zhao, Linda</creatorcontrib><title>Semi-Supervised Linear Regression</title><title>Journal of the American Statistical Association</title><description>We study a regression problem where for some part of the data we observe both the label variable (Y) and the predictors (
), while for other part of the data only the predictors are given. Such a problem arises, for example, when observations of the label variable are costly and may require a skilled human agent. When the conditional expectation
is not exactly linear, one can consider the best linear approximation to the conditional expectation, which can be estimated consistently by the least-square estimates (LSE). The latter depends only on the labeled data. We suggest improved alternative estimates to the LSE that use also the unlabeled data. Our estimation method can be easily implemented and has simply described asymptotic properties. The new estimates asymptotically dominate the usual standard procedures under certain non-linearity condition of
; otherwise, they are asymptotically equivalent. The performance of the new estimator for small sample size is investigated in an extensive simulation study. A real data example of inferring homeless population is used to illustrate the new methodology.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Estimates</subject><subject>Homeless people</subject><subject>Linear regression</subject><subject>Misspecified models</subject><subject>Regression analysis</subject><subject>Semi-supervised learning</subject><subject>Simulation</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><recordid>eNp9kF1LwzAUhoMoOKc_QZh43XpO0jTNnTL8goHgFLwLaZpIxtbMpFP2723pvPXcvBx43nPgIeQSIUeo4AawpFhwmVOgmKNEzigckUmfIqOi-Dgmk4HJBuiUnKW0gn5EVU3I1dJufLbcbW389sk2s4VvrY6zV_sZbUo-tOfkxOl1sheHnJL3h_u3-VO2eHl8nt8tMlNw7DLtuJFaYMHAcI61pMJqU2Ndm4Jx0EIY2W-0dBWjTSVQUCjrhmpwHKhBNiXX491tDF87mzq1CrvY9i8VFSWwgkpZ9RQfKRNDStE6tY1-o-NeIajBhvqzoQYb6mCj792OPd-6EDf6J8R1ozq9X4foom6NT4r9f-IXke5kFw</recordid><startdate>20221002</startdate><enddate>20221002</enddate><creator>Azriel, David</creator><creator>Brown, Lawrence D.</creator><creator>Sklar, Michael</creator><creator>Berk, Richard</creator><creator>Buja, Andreas</creator><creator>Zhao, Linda</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0002-9569-576X</orcidid></search><sort><creationdate>20221002</creationdate><title>Semi-Supervised Linear Regression</title><author>Azriel, David ; Brown, Lawrence D. ; Sklar, Michael ; Berk, Richard ; Buja, Andreas ; Zhao, Linda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-af5c9a71430c551b927eacb1bbc4350a77c9b1b26f832d8717206bd2a0f502c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Estimates</topic><topic>Homeless people</topic><topic>Linear regression</topic><topic>Misspecified models</topic><topic>Regression analysis</topic><topic>Semi-supervised learning</topic><topic>Simulation</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azriel, David</creatorcontrib><creatorcontrib>Brown, Lawrence D.</creatorcontrib><creatorcontrib>Sklar, Michael</creatorcontrib><creatorcontrib>Berk, Richard</creatorcontrib><creatorcontrib>Buja, Andreas</creatorcontrib><creatorcontrib>Zhao, Linda</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azriel, David</au><au>Brown, Lawrence D.</au><au>Sklar, Michael</au><au>Berk, Richard</au><au>Buja, Andreas</au><au>Zhao, Linda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-Supervised Linear Regression</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2022-10-02</date><risdate>2022</risdate><volume>117</volume><issue>540</issue><spage>2238</spage><epage>2251</epage><pages>2238-2251</pages><issn>0162-1459</issn><eissn>1537-274X</eissn><abstract>We study a regression problem where for some part of the data we observe both the label variable (Y) and the predictors (
), while for other part of the data only the predictors are given. Such a problem arises, for example, when observations of the label variable are costly and may require a skilled human agent. When the conditional expectation
is not exactly linear, one can consider the best linear approximation to the conditional expectation, which can be estimated consistently by the least-square estimates (LSE). The latter depends only on the labeled data. We suggest improved alternative estimates to the LSE that use also the unlabeled data. Our estimation method can be easily implemented and has simply described asymptotic properties. The new estimates asymptotically dominate the usual standard procedures under certain non-linearity condition of
; otherwise, they are asymptotically equivalent. The performance of the new estimator for small sample size is investigated in an extensive simulation study. A real data example of inferring homeless population is used to illustrate the new methodology.</abstract><cop>Alexandria</cop><pub>Taylor & Francis</pub><doi>10.1080/01621459.2021.1915320</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9569-576X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0162-1459 |
ispartof | Journal of the American Statistical Association, 2022-10, Vol.117 (540), p.2238-2251 |
issn | 0162-1459 1537-274X |
language | eng |
recordid | cdi_crossref_primary_10_1080_01621459_2021_1915320 |
source | International Bibliography of the Social Sciences (IBSS); Taylor and Francis Science and Technology Collection |
subjects | Asymptotic methods Asymptotic properties Estimates Homeless people Linear regression Misspecified models Regression analysis Semi-supervised learning Simulation Statistical methods Statistics |
title | Semi-Supervised Linear Regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-Supervised%20Linear%20Regression&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Azriel,%20David&rft.date=2022-10-02&rft.volume=117&rft.issue=540&rft.spage=2238&rft.epage=2251&rft.pages=2238-2251&rft.issn=0162-1459&rft.eissn=1537-274X&rft_id=info:doi/10.1080/01621459.2021.1915320&rft_dat=%3Cproquest_cross%3E2760342998%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-af5c9a71430c551b927eacb1bbc4350a77c9b1b26f832d8717206bd2a0f502c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760342998&rft_id=info:pmid/&rfr_iscdi=true |