Loading…

Certain Results Concerning the Iterative Function System

Invention of wavelets and fractals have revolutionized several areas of emerging technologies, especially image processing and scientific computing. The iterated function system [2-4,13,17,18,20,25,26,29], inverse problem of images [5,14-16] and wavelet-based numerical methods [6,7,10,19,22,23] are...

Full description

Saved in:
Bibliographic Details
Published in:Numerical functional analysis and optimization 2000-01, Vol.21 (1-2), p.217-225
Main Authors: Manchanda, Pammy, Mukheimer, Aimen A. S., Siddiqi, A. H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c277t-d78b213f41637221c941326ace7169c81302a505670147bce9fd65303df0e733
container_end_page 225
container_issue 1-2
container_start_page 217
container_title Numerical functional analysis and optimization
container_volume 21
creator Manchanda, Pammy
Mukheimer, Aimen A. S.
Siddiqi, A. H.
description Invention of wavelets and fractals have revolutionized several areas of emerging technologies, especially image processing and scientific computing. The iterated function system [2-4,13,17,18,20,25,26,29], inverse problem of images [5,14-16] and wavelet-based numerical methods [6,7,10,19,22,23] are basic in-gredients of these exciting developments. The iterated function system and the collage theorem are among the basic mathematical tools which are consequences of the Banach contraction fixed point theorem. In one of the sections of this paper we have generalized these two theorems applying a generalization of the Banach contraction fixed point theorem due to Edelstein [11]. In the other section we have studied the inverse problem of images by the iterative function system with grey-level in the context of Besov space, extending a result of Forte and Vrscay [16].
doi_str_mv 10.1080/01630560008816950
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01630560008816950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1351804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c277t-d78b213f41637221c941326ace7169c81302a505670147bce9fd65303df0e733</originalsourceid><addsrcrecordid>eNp1j8FKxDAQhoMoWFcfwFsPXquTTNuk4EWKqwsLgu69ZNNEI226JFll394sq3gQT3OY75t_fkIuKVxTEHADtEaoagAQgtZNBUckoxWygpU1PybZfl8kAE_JWQjviUPWiIyIVvsorcufddgOMeTt5JT2zrrXPL7pfBG1l9F-6Hy-dSrayeUvuxD1eE5OjByCvvieM7Ka36_ax2L59LBo75aFYpzHoudizSiaMuVzxqhqSoqslkrz9KYSFIHJKj3GgZZ8rXRj-rpCwN6A5ogzQg9nlZ9C8Np0G29H6XcdhW7fvPvTPDlXB2cjg5KD8dIpG35FrKiAMmG3B8w6M_lRfk5-6Lsod8Pkfxz8P-ULgNFo-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Certain Results Concerning the Iterative Function System</title><source>Taylor and Francis Science and Technology Collection</source><creator>Manchanda, Pammy ; Mukheimer, Aimen A. S. ; Siddiqi, A. H.</creator><creatorcontrib>Manchanda, Pammy ; Mukheimer, Aimen A. S. ; Siddiqi, A. H.</creatorcontrib><description>Invention of wavelets and fractals have revolutionized several areas of emerging technologies, especially image processing and scientific computing. The iterated function system [2-4,13,17,18,20,25,26,29], inverse problem of images [5,14-16] and wavelet-based numerical methods [6,7,10,19,22,23] are basic in-gredients of these exciting developments. The iterated function system and the collage theorem are among the basic mathematical tools which are consequences of the Banach contraction fixed point theorem. In one of the sections of this paper we have generalized these two theorems applying a generalization of the Banach contraction fixed point theorem due to Edelstein [11]. In the other section we have studied the inverse problem of images by the iterative function system with grey-level in the context of Besov space, extending a result of Forte and Vrscay [16].</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630560008816950</identifier><identifier>CODEN: NFAODL</identifier><language>eng</language><publisher>Philadelphia, PA: Marcel Dekker, Inc</publisher><subject>Applied sciences ; Approximations and expansions ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Mathematical analysis ; Mathematics ; Pattern recognition. Digital image processing. Computational geometry ; Sciences and techniques of general use ; Special functions</subject><ispartof>Numerical functional analysis and optimization, 2000-01, Vol.21 (1-2), p.217-225</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2000</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c277t-d78b213f41637221c941326ace7169c81302a505670147bce9fd65303df0e733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,4050,4051,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1351804$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Manchanda, Pammy</creatorcontrib><creatorcontrib>Mukheimer, Aimen A. S.</creatorcontrib><creatorcontrib>Siddiqi, A. H.</creatorcontrib><title>Certain Results Concerning the Iterative Function System</title><title>Numerical functional analysis and optimization</title><description>Invention of wavelets and fractals have revolutionized several areas of emerging technologies, especially image processing and scientific computing. The iterated function system [2-4,13,17,18,20,25,26,29], inverse problem of images [5,14-16] and wavelet-based numerical methods [6,7,10,19,22,23] are basic in-gredients of these exciting developments. The iterated function system and the collage theorem are among the basic mathematical tools which are consequences of the Banach contraction fixed point theorem. In one of the sections of this paper we have generalized these two theorems applying a generalization of the Banach contraction fixed point theorem due to Edelstein [11]. In the other section we have studied the inverse problem of images by the iterative function system with grey-level in the context of Besov space, extending a result of Forte and Vrscay [16].</description><subject>Applied sciences</subject><subject>Approximations and expansions</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Sciences and techniques of general use</subject><subject>Special functions</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp1j8FKxDAQhoMoWFcfwFsPXquTTNuk4EWKqwsLgu69ZNNEI226JFll394sq3gQT3OY75t_fkIuKVxTEHADtEaoagAQgtZNBUckoxWygpU1PybZfl8kAE_JWQjviUPWiIyIVvsorcufddgOMeTt5JT2zrrXPL7pfBG1l9F-6Hy-dSrayeUvuxD1eE5OjByCvvieM7Ka36_ax2L59LBo75aFYpzHoudizSiaMuVzxqhqSoqslkrz9KYSFIHJKj3GgZZ8rXRj-rpCwN6A5ogzQg9nlZ9C8Np0G29H6XcdhW7fvPvTPDlXB2cjg5KD8dIpG35FrKiAMmG3B8w6M_lRfk5-6Lsod8Pkfxz8P-ULgNFo-Q</recordid><startdate>20000101</startdate><enddate>20000101</enddate><creator>Manchanda, Pammy</creator><creator>Mukheimer, Aimen A. S.</creator><creator>Siddiqi, A. H.</creator><general>Marcel Dekker, Inc</general><general>Taylor &amp; Francis</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000101</creationdate><title>Certain Results Concerning the Iterative Function System</title><author>Manchanda, Pammy ; Mukheimer, Aimen A. S. ; Siddiqi, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c277t-d78b213f41637221c941326ace7169c81302a505670147bce9fd65303df0e733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Applied sciences</topic><topic>Approximations and expansions</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Sciences and techniques of general use</topic><topic>Special functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manchanda, Pammy</creatorcontrib><creatorcontrib>Mukheimer, Aimen A. S.</creatorcontrib><creatorcontrib>Siddiqi, A. H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manchanda, Pammy</au><au>Mukheimer, Aimen A. S.</au><au>Siddiqi, A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Certain Results Concerning the Iterative Function System</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>2000-01-01</date><risdate>2000</risdate><volume>21</volume><issue>1-2</issue><spage>217</spage><epage>225</epage><pages>217-225</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><coden>NFAODL</coden><abstract>Invention of wavelets and fractals have revolutionized several areas of emerging technologies, especially image processing and scientific computing. The iterated function system [2-4,13,17,18,20,25,26,29], inverse problem of images [5,14-16] and wavelet-based numerical methods [6,7,10,19,22,23] are basic in-gredients of these exciting developments. The iterated function system and the collage theorem are among the basic mathematical tools which are consequences of the Banach contraction fixed point theorem. In one of the sections of this paper we have generalized these two theorems applying a generalization of the Banach contraction fixed point theorem due to Edelstein [11]. In the other section we have studied the inverse problem of images by the iterative function system with grey-level in the context of Besov space, extending a result of Forte and Vrscay [16].</abstract><cop>Philadelphia, PA</cop><pub>Marcel Dekker, Inc</pub><doi>10.1080/01630560008816950</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-0563
ispartof Numerical functional analysis and optimization, 2000-01, Vol.21 (1-2), p.217-225
issn 0163-0563
1532-2467
language eng
recordid cdi_crossref_primary_10_1080_01630560008816950
source Taylor and Francis Science and Technology Collection
subjects Applied sciences
Approximations and expansions
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Mathematical analysis
Mathematics
Pattern recognition. Digital image processing. Computational geometry
Sciences and techniques of general use
Special functions
title Certain Results Concerning the Iterative Function System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T09%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Certain%20Results%20Concerning%20the%20Iterative%20Function%20System&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Manchanda,%20Pammy&rft.date=2000-01-01&rft.volume=21&rft.issue=1-2&rft.spage=217&rft.epage=225&rft.pages=217-225&rft.issn=0163-0563&rft.eissn=1532-2467&rft.coden=NFAODL&rft_id=info:doi/10.1080/01630560008816950&rft_dat=%3Cpascalfrancis_cross%3E1351804%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c277t-d78b213f41637221c941326ace7169c81302a505670147bce9fd65303df0e733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true