Loading…

The Lambert Function on the Solution of a Delay Differential Equation

Recently, a new method for computing the analytical solution of a delay differential equation was developed considering a constant initial function. It is based on the existence of a specific class of polynomials in the delay. In this article, we extend this new method to the case of a continuous in...

Full description

Saved in:
Bibliographic Details
Published in:Numerical functional analysis and optimization 2011-01, Vol.32 (11), p.1116-1126
Main Authors: Brito, Paulo B., Fabião, M. Fátima, St. Aubyn, António G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3
cites cdi_FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3
container_end_page 1126
container_issue 11
container_start_page 1116
container_title Numerical functional analysis and optimization
container_volume 32
creator Brito, Paulo B.
Fabião, M. Fátima
St. Aubyn, António G.
description Recently, a new method for computing the analytical solution of a delay differential equation was developed considering a constant initial function. It is based on the existence of a specific class of polynomials in the delay. In this article, we extend this new method to the case of a continuous initial function. We also show the relationship between the new solution's method and the solution expressed in terms of the Lambert function.
doi_str_mv 10.1080/01630563.2011.589936
format article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01630563_2011_589936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25362884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8F8diaZJJsehLZDxUWPLiewzRNsNJt16Sr7L-3pa5HYSBMeN6X4SHkmtGMUU3vKFNApYKMU8YyqfMc1AmZMAk85ULNTslkQNKBOScXMX5QSoHnekKWm3eXrHFbuNAlq31ju6ptkn66_v-1rffj7hNMFq7GQ7KovHfBNV2FdbL83OMAXJIzj3V0V7_vlLytlpv5U7p-eXyeP6xTC0p2KfCZdQAeOM1ZUQpUVvNSokUtkHvIUShWKltwqW0hPM2Fs47NBC8ANbMwJWLstaGNMThvdqHaYjgYRs2gwhxVmEGFGVX0sdsxtsNosfYBG1vFvyyXoLjWouduRi5YxJ0J7quKHca-WVBqpAEqYKDuR6pqfBu2-N2GujQdHuo2HKvh33t-AGQMfK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Lambert Function on the Solution of a Delay Differential Equation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Brito, Paulo B. ; Fabião, M. Fátima ; St. Aubyn, António G.</creator><creatorcontrib>Brito, Paulo B. ; Fabião, M. Fátima ; St. Aubyn, António G.</creatorcontrib><description>Recently, a new method for computing the analytical solution of a delay differential equation was developed considering a constant initial function. It is based on the existence of a specific class of polynomials in the delay. In this article, we extend this new method to the case of a continuous initial function. We also show the relationship between the new solution's method and the solution expressed in terms of the Lambert function.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630563.2011.589936</identifier><identifier>CODEN: NFAODL</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor &amp; Francis Group</publisher><subject>Delay Differential Equation ; Exact sciences and technology ; Lambert Function ; Mathematical analysis ; Mathematics ; Ordinary differential equations ; Polynomials in the Delay ; Real functions ; Sciences and techniques of general use</subject><ispartof>Numerical functional analysis and optimization, 2011-01, Vol.32 (11), p.1116-1126</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3</citedby><cites>FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25362884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brito, Paulo B.</creatorcontrib><creatorcontrib>Fabião, M. Fátima</creatorcontrib><creatorcontrib>St. Aubyn, António G.</creatorcontrib><title>The Lambert Function on the Solution of a Delay Differential Equation</title><title>Numerical functional analysis and optimization</title><description>Recently, a new method for computing the analytical solution of a delay differential equation was developed considering a constant initial function. It is based on the existence of a specific class of polynomials in the delay. In this article, we extend this new method to the case of a continuous initial function. We also show the relationship between the new solution's method and the solution expressed in terms of the Lambert function.</description><subject>Delay Differential Equation</subject><subject>Exact sciences and technology</subject><subject>Lambert Function</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>Polynomials in the Delay</subject><subject>Real functions</subject><subject>Sciences and techniques of general use</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8F8diaZJJsehLZDxUWPLiewzRNsNJt16Sr7L-3pa5HYSBMeN6X4SHkmtGMUU3vKFNApYKMU8YyqfMc1AmZMAk85ULNTslkQNKBOScXMX5QSoHnekKWm3eXrHFbuNAlq31ju6ptkn66_v-1rffj7hNMFq7GQ7KovHfBNV2FdbL83OMAXJIzj3V0V7_vlLytlpv5U7p-eXyeP6xTC0p2KfCZdQAeOM1ZUQpUVvNSokUtkHvIUShWKltwqW0hPM2Fs47NBC8ANbMwJWLstaGNMThvdqHaYjgYRs2gwhxVmEGFGVX0sdsxtsNosfYBG1vFvyyXoLjWouduRi5YxJ0J7quKHca-WVBqpAEqYKDuR6pqfBu2-N2GujQdHuo2HKvh33t-AGQMfK8</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Brito, Paulo B.</creator><creator>Fabião, M. Fátima</creator><creator>St. Aubyn, António G.</creator><general>Taylor &amp; Francis Group</general><general>Taylor &amp; Francis</general><scope>RCLKO</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110101</creationdate><title>The Lambert Function on the Solution of a Delay Differential Equation</title><author>Brito, Paulo B. ; Fabião, M. Fátima ; St. Aubyn, António G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Delay Differential Equation</topic><topic>Exact sciences and technology</topic><topic>Lambert Function</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>Polynomials in the Delay</topic><topic>Real functions</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brito, Paulo B.</creatorcontrib><creatorcontrib>Fabião, M. Fátima</creatorcontrib><creatorcontrib>St. Aubyn, António G.</creatorcontrib><collection>RCAAP open access repository</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brito, Paulo B.</au><au>Fabião, M. Fátima</au><au>St. Aubyn, António G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lambert Function on the Solution of a Delay Differential Equation</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>32</volume><issue>11</issue><spage>1116</spage><epage>1126</epage><pages>1116-1126</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><coden>NFAODL</coden><abstract>Recently, a new method for computing the analytical solution of a delay differential equation was developed considering a constant initial function. It is based on the existence of a specific class of polynomials in the delay. In this article, we extend this new method to the case of a continuous initial function. We also show the relationship between the new solution's method and the solution expressed in terms of the Lambert function.</abstract><cop>Philadelphia, PA</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/01630563.2011.589936</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0163-0563
ispartof Numerical functional analysis and optimization, 2011-01, Vol.32 (11), p.1116-1126
issn 0163-0563
1532-2467
language eng
recordid cdi_crossref_primary_10_1080_01630563_2011_589936
source Taylor and Francis Science and Technology Collection
subjects Delay Differential Equation
Exact sciences and technology
Lambert Function
Mathematical analysis
Mathematics
Ordinary differential equations
Polynomials in the Delay
Real functions
Sciences and techniques of general use
title The Lambert Function on the Solution of a Delay Differential Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lambert%20Function%20on%20the%20Solution%20of%20a%20Delay%20Differential%20Equation&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Brito,%20Paulo%20B.&rft.date=2011-01-01&rft.volume=32&rft.issue=11&rft.spage=1116&rft.epage=1126&rft.pages=1116-1126&rft.issn=0163-0563&rft.eissn=1532-2467&rft.coden=NFAODL&rft_id=info:doi/10.1080/01630563.2011.589936&rft_dat=%3Cpascalfrancis_cross%3E25362884%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true