Loading…
The Lambert Function on the Solution of a Delay Differential Equation
Recently, a new method for computing the analytical solution of a delay differential equation was developed considering a constant initial function. It is based on the existence of a specific class of polynomials in the delay. In this article, we extend this new method to the case of a continuous in...
Saved in:
Published in: | Numerical functional analysis and optimization 2011-01, Vol.32 (11), p.1116-1126 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3 |
container_end_page | 1126 |
container_issue | 11 |
container_start_page | 1116 |
container_title | Numerical functional analysis and optimization |
container_volume | 32 |
creator | Brito, Paulo B. Fabião, M. Fátima St. Aubyn, António G. |
description | Recently, a new method for computing the analytical solution of a delay differential equation was developed considering a constant initial function. It is based on the existence of a specific class of polynomials in the delay. In this article, we extend this new method to the case of a continuous initial function. We also show the relationship between the new solution's method and the solution expressed in terms of the Lambert function. |
doi_str_mv | 10.1080/01630563.2011.589936 |
format | article |
fullrecord | <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01630563_2011_589936</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>25362884</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw8F8diaZJJsehLZDxUWPLiewzRNsNJt16Sr7L-3pa5HYSBMeN6X4SHkmtGMUU3vKFNApYKMU8YyqfMc1AmZMAk85ULNTslkQNKBOScXMX5QSoHnekKWm3eXrHFbuNAlq31ju6ptkn66_v-1rffj7hNMFq7GQ7KovHfBNV2FdbL83OMAXJIzj3V0V7_vlLytlpv5U7p-eXyeP6xTC0p2KfCZdQAeOM1ZUQpUVvNSokUtkHvIUShWKltwqW0hPM2Fs47NBC8ANbMwJWLstaGNMThvdqHaYjgYRs2gwhxVmEGFGVX0sdsxtsNosfYBG1vFvyyXoLjWouduRi5YxJ0J7quKHca-WVBqpAEqYKDuR6pqfBu2-N2GujQdHuo2HKvh33t-AGQMfK8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Lambert Function on the Solution of a Delay Differential Equation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Brito, Paulo B. ; Fabião, M. Fátima ; St. Aubyn, António G.</creator><creatorcontrib>Brito, Paulo B. ; Fabião, M. Fátima ; St. Aubyn, António G.</creatorcontrib><description>Recently, a new method for computing the analytical solution of a delay differential equation was developed considering a constant initial function. It is based on the existence of a specific class of polynomials in the delay. In this article, we extend this new method to the case of a continuous initial function. We also show the relationship between the new solution's method and the solution expressed in terms of the Lambert function.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630563.2011.589936</identifier><identifier>CODEN: NFAODL</identifier><language>eng</language><publisher>Philadelphia, PA: Taylor & Francis Group</publisher><subject>Delay Differential Equation ; Exact sciences and technology ; Lambert Function ; Mathematical analysis ; Mathematics ; Ordinary differential equations ; Polynomials in the Delay ; Real functions ; Sciences and techniques of general use</subject><ispartof>Numerical functional analysis and optimization, 2011-01, Vol.32 (11), p.1116-1126</ispartof><rights>Copyright Taylor & Francis Group, LLC 2011</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3</citedby><cites>FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25362884$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Brito, Paulo B.</creatorcontrib><creatorcontrib>Fabião, M. Fátima</creatorcontrib><creatorcontrib>St. Aubyn, António G.</creatorcontrib><title>The Lambert Function on the Solution of a Delay Differential Equation</title><title>Numerical functional analysis and optimization</title><description>Recently, a new method for computing the analytical solution of a delay differential equation was developed considering a constant initial function. It is based on the existence of a specific class of polynomials in the delay. In this article, we extend this new method to the case of a continuous initial function. We also show the relationship between the new solution's method and the solution expressed in terms of the Lambert function.</description><subject>Delay Differential Equation</subject><subject>Exact sciences and technology</subject><subject>Lambert Function</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Ordinary differential equations</subject><subject>Polynomials in the Delay</subject><subject>Real functions</subject><subject>Sciences and techniques of general use</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw8F8diaZJJsehLZDxUWPLiewzRNsNJt16Sr7L-3pa5HYSBMeN6X4SHkmtGMUU3vKFNApYKMU8YyqfMc1AmZMAk85ULNTslkQNKBOScXMX5QSoHnekKWm3eXrHFbuNAlq31ju6ptkn66_v-1rffj7hNMFq7GQ7KovHfBNV2FdbL83OMAXJIzj3V0V7_vlLytlpv5U7p-eXyeP6xTC0p2KfCZdQAeOM1ZUQpUVvNSokUtkHvIUShWKltwqW0hPM2Fs47NBC8ANbMwJWLstaGNMThvdqHaYjgYRs2gwhxVmEGFGVX0sdsxtsNosfYBG1vFvyyXoLjWouduRi5YxJ0J7quKHca-WVBqpAEqYKDuR6pqfBu2-N2GujQdHuo2HKvh33t-AGQMfK8</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Brito, Paulo B.</creator><creator>Fabião, M. Fátima</creator><creator>St. Aubyn, António G.</creator><general>Taylor & Francis Group</general><general>Taylor & Francis</general><scope>RCLKO</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110101</creationdate><title>The Lambert Function on the Solution of a Delay Differential Equation</title><author>Brito, Paulo B. ; Fabião, M. Fátima ; St. Aubyn, António G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Delay Differential Equation</topic><topic>Exact sciences and technology</topic><topic>Lambert Function</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Ordinary differential equations</topic><topic>Polynomials in the Delay</topic><topic>Real functions</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brito, Paulo B.</creatorcontrib><creatorcontrib>Fabião, M. Fátima</creatorcontrib><creatorcontrib>St. Aubyn, António G.</creatorcontrib><collection>RCAAP open access repository</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brito, Paulo B.</au><au>Fabião, M. Fátima</au><au>St. Aubyn, António G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lambert Function on the Solution of a Delay Differential Equation</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>2011-01-01</date><risdate>2011</risdate><volume>32</volume><issue>11</issue><spage>1116</spage><epage>1126</epage><pages>1116-1126</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><coden>NFAODL</coden><abstract>Recently, a new method for computing the analytical solution of a delay differential equation was developed considering a constant initial function. It is based on the existence of a specific class of polynomials in the delay. In this article, we extend this new method to the case of a continuous initial function. We also show the relationship between the new solution's method and the solution expressed in terms of the Lambert function.</abstract><cop>Philadelphia, PA</cop><pub>Taylor & Francis Group</pub><doi>10.1080/01630563.2011.589936</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0163-0563 |
ispartof | Numerical functional analysis and optimization, 2011-01, Vol.32 (11), p.1116-1126 |
issn | 0163-0563 1532-2467 |
language | eng |
recordid | cdi_crossref_primary_10_1080_01630563_2011_589936 |
source | Taylor and Francis Science and Technology Collection |
subjects | Delay Differential Equation Exact sciences and technology Lambert Function Mathematical analysis Mathematics Ordinary differential equations Polynomials in the Delay Real functions Sciences and techniques of general use |
title | The Lambert Function on the Solution of a Delay Differential Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lambert%20Function%20on%20the%20Solution%20of%20a%20Delay%20Differential%20Equation&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Brito,%20Paulo%20B.&rft.date=2011-01-01&rft.volume=32&rft.issue=11&rft.spage=1116&rft.epage=1126&rft.pages=1116-1126&rft.issn=0163-0563&rft.eissn=1532-2467&rft.coden=NFAODL&rft_id=info:doi/10.1080/01630563.2011.589936&rft_dat=%3Cpascalfrancis_cross%3E25362884%3C/pascalfrancis_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-327ce33f32091bd4a6c82d5aca84a2f39a461d6cb258cb4f094ece1742b3a81c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |