Loading…

Locally Hölder Continuity of the Solution Map to a Boundary Control Problem with Finite Mixed Control-State Constraints

The local stability of the solution map to a parametric boundary control problem governed by semilinear elliptic equations with finite mixed pointwise constraints is considered in this paper. We prove that the solution map is locally Hölder continuous in -norm of control variable when the strictly n...

Full description

Saved in:
Bibliographic Details
Published in:Numerical functional analysis and optimization 2023-07, Vol.44 (10), p.987-1011
Main Authors: Nguyen, Hai Son, Dao, Tuan Anh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c286t-d6f94afe4f0dfb9c5384a46a5dda23f53b2d41f441cce093ce679e1b4b0f45813
container_end_page 1011
container_issue 10
container_start_page 987
container_title Numerical functional analysis and optimization
container_volume 44
creator Nguyen, Hai Son
Dao, Tuan Anh
description The local stability of the solution map to a parametric boundary control problem governed by semilinear elliptic equations with finite mixed pointwise constraints is considered in this paper. We prove that the solution map is locally Hölder continuous in -norm of control variable when the strictly nonnegative second-order optimality conditions are satisfied for the unperturbed problem.
doi_str_mv 10.1080/01630563.2023.2221739
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01630563_2023_2221739</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2838882592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-d6f94afe4f0dfb9c5384a46a5dda23f53b2d41f441cce093ce679e1b4b0f45813</originalsourceid><addsrcrecordid>eNp9kN1KAzEQhYMoWH8eQQh4vTV_u83eqcWqUFGoXofsJqEpaVKTLG1fzBfwxdxae-vNDDN85wxzALjCaIgRRzcIVxSVFR0SRPpCCB7R-ggMcElJQVg1OgaDHVPsoFNwltICIURJzQdgMw2tdG4Ln76_nNIRjoPP1nc2b2EwMM81nAXXZRs8fJErmAOU8D50Xsm4_YVjcPAthsbpJVzbPIcT623W8MVutDoQxSzLftdPKUdpfU4X4MRIl_TlXz8HH5OH9_FTMX19fB7fTYuW8CoXqjI1k0Yzg5Rp6raknElWyVIpSagpaUMUw4Yx3LYa1bTV1ajWuGENMqzkmJ6D673vKobPTqcsFqGLvj8pCKecc1LWpKfKPdXGkFLURqyiXfYvCozELmRxCFnsQhZ_Ife6273OehPiUq5DdEpkuXUhmih9a5Og_1v8ACF6hYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2838882592</pqid></control><display><type>article</type><title>Locally Hölder Continuity of the Solution Map to a Boundary Control Problem with Finite Mixed Control-State Constraints</title><source>Taylor and Francis Science and Technology Collection</source><creator>Nguyen, Hai Son ; Dao, Tuan Anh</creator><creatorcontrib>Nguyen, Hai Son ; Dao, Tuan Anh</creatorcontrib><description>The local stability of the solution map to a parametric boundary control problem governed by semilinear elliptic equations with finite mixed pointwise constraints is considered in this paper. We prove that the solution map is locally Hölder continuous in -norm of control variable when the strictly nonnegative second-order optimality conditions are satisfied for the unperturbed problem.</description><identifier>ISSN: 0163-0563</identifier><identifier>EISSN: 1532-2467</identifier><identifier>DOI: 10.1080/01630563.2023.2221739</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Boundary control ; Continuity (mathematics) ; Elliptic functions ; locally upper Hölder continuity ; mixed control-state constraints ; optimality condition ; solution stability</subject><ispartof>Numerical functional analysis and optimization, 2023-07, Vol.44 (10), p.987-1011</ispartof><rights>2023 Taylor &amp; Francis Group, LLC 2023</rights><rights>2023 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-d6f94afe4f0dfb9c5384a46a5dda23f53b2d41f441cce093ce679e1b4b0f45813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Nguyen, Hai Son</creatorcontrib><creatorcontrib>Dao, Tuan Anh</creatorcontrib><title>Locally Hölder Continuity of the Solution Map to a Boundary Control Problem with Finite Mixed Control-State Constraints</title><title>Numerical functional analysis and optimization</title><description>The local stability of the solution map to a parametric boundary control problem governed by semilinear elliptic equations with finite mixed pointwise constraints is considered in this paper. We prove that the solution map is locally Hölder continuous in -norm of control variable when the strictly nonnegative second-order optimality conditions are satisfied for the unperturbed problem.</description><subject>Boundary control</subject><subject>Continuity (mathematics)</subject><subject>Elliptic functions</subject><subject>locally upper Hölder continuity</subject><subject>mixed control-state constraints</subject><subject>optimality condition</subject><subject>solution stability</subject><issn>0163-0563</issn><issn>1532-2467</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kN1KAzEQhYMoWH8eQQh4vTV_u83eqcWqUFGoXofsJqEpaVKTLG1fzBfwxdxae-vNDDN85wxzALjCaIgRRzcIVxSVFR0SRPpCCB7R-ggMcElJQVg1OgaDHVPsoFNwltICIURJzQdgMw2tdG4Ln76_nNIRjoPP1nc2b2EwMM81nAXXZRs8fJErmAOU8D50Xsm4_YVjcPAthsbpJVzbPIcT623W8MVutDoQxSzLftdPKUdpfU4X4MRIl_TlXz8HH5OH9_FTMX19fB7fTYuW8CoXqjI1k0Yzg5Rp6raknElWyVIpSagpaUMUw4Yx3LYa1bTV1ajWuGENMqzkmJ6D673vKobPTqcsFqGLvj8pCKecc1LWpKfKPdXGkFLURqyiXfYvCozELmRxCFnsQhZ_Ife6273OehPiUq5DdEpkuXUhmih9a5Og_1v8ACF6hYk</recordid><startdate>20230727</startdate><enddate>20230727</enddate><creator>Nguyen, Hai Son</creator><creator>Dao, Tuan Anh</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230727</creationdate><title>Locally Hölder Continuity of the Solution Map to a Boundary Control Problem with Finite Mixed Control-State Constraints</title><author>Nguyen, Hai Son ; Dao, Tuan Anh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-d6f94afe4f0dfb9c5384a46a5dda23f53b2d41f441cce093ce679e1b4b0f45813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary control</topic><topic>Continuity (mathematics)</topic><topic>Elliptic functions</topic><topic>locally upper Hölder continuity</topic><topic>mixed control-state constraints</topic><topic>optimality condition</topic><topic>solution stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Hai Son</creatorcontrib><creatorcontrib>Dao, Tuan Anh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Numerical functional analysis and optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Hai Son</au><au>Dao, Tuan Anh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Locally Hölder Continuity of the Solution Map to a Boundary Control Problem with Finite Mixed Control-State Constraints</atitle><jtitle>Numerical functional analysis and optimization</jtitle><date>2023-07-27</date><risdate>2023</risdate><volume>44</volume><issue>10</issue><spage>987</spage><epage>1011</epage><pages>987-1011</pages><issn>0163-0563</issn><eissn>1532-2467</eissn><abstract>The local stability of the solution map to a parametric boundary control problem governed by semilinear elliptic equations with finite mixed pointwise constraints is considered in this paper. We prove that the solution map is locally Hölder continuous in -norm of control variable when the strictly nonnegative second-order optimality conditions are satisfied for the unperturbed problem.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01630563.2023.2221739</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0163-0563
ispartof Numerical functional analysis and optimization, 2023-07, Vol.44 (10), p.987-1011
issn 0163-0563
1532-2467
language eng
recordid cdi_crossref_primary_10_1080_01630563_2023_2221739
source Taylor and Francis Science and Technology Collection
subjects Boundary control
Continuity (mathematics)
Elliptic functions
locally upper Hölder continuity
mixed control-state constraints
optimality condition
solution stability
title Locally Hölder Continuity of the Solution Map to a Boundary Control Problem with Finite Mixed Control-State Constraints
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Locally%20H%C3%B6lder%20Continuity%20of%20the%20Solution%20Map%20to%20a%20Boundary%20Control%20Problem%20with%20Finite%20Mixed%20Control-State%20Constraints&rft.jtitle=Numerical%20functional%20analysis%20and%20optimization&rft.au=Nguyen,%20Hai%20Son&rft.date=2023-07-27&rft.volume=44&rft.issue=10&rft.spage=987&rft.epage=1011&rft.pages=987-1011&rft.issn=0163-0563&rft.eissn=1532-2467&rft_id=info:doi/10.1080/01630563.2023.2221739&rft_dat=%3Cproquest_cross%3E2838882592%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-d6f94afe4f0dfb9c5384a46a5dda23f53b2d41f441cce093ce679e1b4b0f45813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2838882592&rft_id=info:pmid/&rfr_iscdi=true