Loading…

Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle

This paper proposes an adaptive neural network control with neural state's observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of S...

Full description

Saved in:
Bibliographic Details
Published in:Advanced robotics 2014-09, Vol.28 (17), p.1151-1164
Main Authors: Boudjedir, Hana, Bouhali, Omar, Rizoug, Nassim
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33
cites cdi_FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33
container_end_page 1164
container_issue 17
container_start_page 1151
container_title Advanced robotics
container_volume 28
creator Boudjedir, Hana
Bouhali, Omar
Rizoug, Nassim
description This paper proposes an adaptive neural network control with neural state's observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of Sliding Mode Observer (SMO), a new neural observer is proposed to estimate the states. The aim of this work is to propose an observer insensitive to the measurement noise. The stability proof of global system is made by Lyapunov direct method. The adaptation laws of both artificial neural networks (ANNs) are derived from Lyapunov theory. The proposed controller is validated by simulation on the quadrotor under measurement noise conditions. A comparative study with SMO is made to highlight the performances of the proposed neural observer.
doi_str_mv 10.1080/01691864.2014.913498
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01691864_2014_913498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04554557v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMNePWxNNslucpJS1AoFL3o1TPNBV7dJTbYr_nuz1HoUBmbIPO9AHoSuCZ4RLPAtJrUkomazChM2k4QyKU7QhPBalJxTfoomI1KOzDm6SOkdYywYbSbobW5g17eDLbzdR-hy679C_Ch08H0MXbGGZE0R_HEf1snGwcbChVh87sHE0Odp77fgfSbBxjZjg920urOX6MxBl-zVb5-i14f7l8WyXD0_Pi3mq1JTRvrS8cY4DYIKU1tZaaYboFI2ldOU46qquTRgLNGNzTOhhAoqaVU7RqxYa0qn6OZwdwOd2sV2C_FbBWjVcr5S4xtmnOdqBpJZdmB1DClF6_4CBKvRpzr6VKNPdfCZY3eHWOvz17eQLXVG9fDdhegieN0mRf-98ANf7Xzb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Boudjedir, Hana ; Bouhali, Omar ; Rizoug, Nassim</creator><creatorcontrib>Boudjedir, Hana ; Bouhali, Omar ; Rizoug, Nassim</creatorcontrib><description>This paper proposes an adaptive neural network control with neural state's observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of Sliding Mode Observer (SMO), a new neural observer is proposed to estimate the states. The aim of this work is to propose an observer insensitive to the measurement noise. The stability proof of global system is made by Lyapunov direct method. The adaptation laws of both artificial neural networks (ANNs) are derived from Lyapunov theory. The proposed controller is validated by simulation on the quadrotor under measurement noise conditions. A comparative study with SMO is made to highlight the performances of the proposed neural observer.</description><identifier>ISSN: 0169-1864</identifier><identifier>EISSN: 1568-5535</identifier><identifier>DOI: 10.1080/01691864.2014.913498</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>adaptive control ; Engineering Sciences ; neuronal control and observer ; noise rejection ; quadrotor ; sliding mode observers</subject><ispartof>Advanced robotics, 2014-09, Vol.28 (17), p.1151-1164</ispartof><rights>2014 Taylor &amp; Francis and The Robotics Society of Japan 2014</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33</citedby><cites>FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33</cites><orcidid>0000-0002-2151-185X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04554557$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boudjedir, Hana</creatorcontrib><creatorcontrib>Bouhali, Omar</creatorcontrib><creatorcontrib>Rizoug, Nassim</creatorcontrib><title>Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle</title><title>Advanced robotics</title><description>This paper proposes an adaptive neural network control with neural state's observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of Sliding Mode Observer (SMO), a new neural observer is proposed to estimate the states. The aim of this work is to propose an observer insensitive to the measurement noise. The stability proof of global system is made by Lyapunov direct method. The adaptation laws of both artificial neural networks (ANNs) are derived from Lyapunov theory. The proposed controller is validated by simulation on the quadrotor under measurement noise conditions. A comparative study with SMO is made to highlight the performances of the proposed neural observer.</description><subject>adaptive control</subject><subject>Engineering Sciences</subject><subject>neuronal control and observer</subject><subject>noise rejection</subject><subject>quadrotor</subject><subject>sliding mode observers</subject><issn>0169-1864</issn><issn>1568-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMNePWxNNslucpJS1AoFL3o1TPNBV7dJTbYr_nuz1HoUBmbIPO9AHoSuCZ4RLPAtJrUkomazChM2k4QyKU7QhPBalJxTfoomI1KOzDm6SOkdYywYbSbobW5g17eDLbzdR-hy679C_Ch08H0MXbGGZE0R_HEf1snGwcbChVh87sHE0Odp77fgfSbBxjZjg920urOX6MxBl-zVb5-i14f7l8WyXD0_Pi3mq1JTRvrS8cY4DYIKU1tZaaYboFI2ldOU46qquTRgLNGNzTOhhAoqaVU7RqxYa0qn6OZwdwOd2sV2C_FbBWjVcr5S4xtmnOdqBpJZdmB1DClF6_4CBKvRpzr6VKNPdfCZY3eHWOvz17eQLXVG9fDdhegieN0mRf-98ANf7Xzb</recordid><startdate>20140902</startdate><enddate>20140902</enddate><creator>Boudjedir, Hana</creator><creator>Bouhali, Omar</creator><creator>Rizoug, Nassim</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2151-185X</orcidid></search><sort><creationdate>20140902</creationdate><title>Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle</title><author>Boudjedir, Hana ; Bouhali, Omar ; Rizoug, Nassim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adaptive control</topic><topic>Engineering Sciences</topic><topic>neuronal control and observer</topic><topic>noise rejection</topic><topic>quadrotor</topic><topic>sliding mode observers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudjedir, Hana</creatorcontrib><creatorcontrib>Bouhali, Omar</creatorcontrib><creatorcontrib>Rizoug, Nassim</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advanced robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudjedir, Hana</au><au>Bouhali, Omar</au><au>Rizoug, Nassim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle</atitle><jtitle>Advanced robotics</jtitle><date>2014-09-02</date><risdate>2014</risdate><volume>28</volume><issue>17</issue><spage>1151</spage><epage>1164</epage><pages>1151-1164</pages><issn>0169-1864</issn><eissn>1568-5535</eissn><abstract>This paper proposes an adaptive neural network control with neural state's observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of Sliding Mode Observer (SMO), a new neural observer is proposed to estimate the states. The aim of this work is to propose an observer insensitive to the measurement noise. The stability proof of global system is made by Lyapunov direct method. The adaptation laws of both artificial neural networks (ANNs) are derived from Lyapunov theory. The proposed controller is validated by simulation on the quadrotor under measurement noise conditions. A comparative study with SMO is made to highlight the performances of the proposed neural observer.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/01691864.2014.913498</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2151-185X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0169-1864
ispartof Advanced robotics, 2014-09, Vol.28 (17), p.1151-1164
issn 0169-1864
1568-5535
language eng
recordid cdi_crossref_primary_10_1080_01691864_2014_913498
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects adaptive control
Engineering Sciences
neuronal control and observer
noise rejection
quadrotor
sliding mode observers
title Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20neural%20network%20control%20based%20on%20neural%20observer%20for%20quadrotor%20unmanned%20aerial%20vehicle&rft.jtitle=Advanced%20robotics&rft.au=Boudjedir,%20Hana&rft.date=2014-09-02&rft.volume=28&rft.issue=17&rft.spage=1151&rft.epage=1164&rft.pages=1151-1164&rft.issn=0169-1864&rft.eissn=1568-5535&rft_id=info:doi/10.1080/01691864.2014.913498&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04554557v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true