Loading…
Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle
This paper proposes an adaptive neural network control with neural state's observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of S...
Saved in:
Published in: | Advanced robotics 2014-09, Vol.28 (17), p.1151-1164 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33 |
---|---|
cites | cdi_FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33 |
container_end_page | 1164 |
container_issue | 17 |
container_start_page | 1151 |
container_title | Advanced robotics |
container_volume | 28 |
creator | Boudjedir, Hana Bouhali, Omar Rizoug, Nassim |
description | This paper proposes an adaptive neural network control with neural state's observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of Sliding Mode Observer (SMO), a new neural observer is proposed to estimate the states. The aim of this work is to propose an observer insensitive to the measurement noise. The stability proof of global system is made by Lyapunov direct method. The adaptation laws of both artificial neural networks (ANNs) are derived from Lyapunov theory. The proposed controller is validated by simulation on the quadrotor under measurement noise conditions. A comparative study with SMO is made to highlight the performances of the proposed neural observer. |
doi_str_mv | 10.1080/01691864.2014.913498 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01691864_2014_913498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_04554557v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKv_wMNePWxNNslucpJS1AoFL3o1TPNBV7dJTbYr_nuz1HoUBmbIPO9AHoSuCZ4RLPAtJrUkomazChM2k4QyKU7QhPBalJxTfoomI1KOzDm6SOkdYywYbSbobW5g17eDLbzdR-hy679C_Ch08H0MXbGGZE0R_HEf1snGwcbChVh87sHE0Odp77fgfSbBxjZjg920urOX6MxBl-zVb5-i14f7l8WyXD0_Pi3mq1JTRvrS8cY4DYIKU1tZaaYboFI2ldOU46qquTRgLNGNzTOhhAoqaVU7RqxYa0qn6OZwdwOd2sV2C_FbBWjVcr5S4xtmnOdqBpJZdmB1DClF6_4CBKvRpzr6VKNPdfCZY3eHWOvz17eQLXVG9fDdhegieN0mRf-98ANf7Xzb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Boudjedir, Hana ; Bouhali, Omar ; Rizoug, Nassim</creator><creatorcontrib>Boudjedir, Hana ; Bouhali, Omar ; Rizoug, Nassim</creatorcontrib><description>This paper proposes an adaptive neural network control with neural state's observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of Sliding Mode Observer (SMO), a new neural observer is proposed to estimate the states. The aim of this work is to propose an observer insensitive to the measurement noise. The stability proof of global system is made by Lyapunov direct method. The adaptation laws of both artificial neural networks (ANNs) are derived from Lyapunov theory. The proposed controller is validated by simulation on the quadrotor under measurement noise conditions. A comparative study with SMO is made to highlight the performances of the proposed neural observer.</description><identifier>ISSN: 0169-1864</identifier><identifier>EISSN: 1568-5535</identifier><identifier>DOI: 10.1080/01691864.2014.913498</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>adaptive control ; Engineering Sciences ; neuronal control and observer ; noise rejection ; quadrotor ; sliding mode observers</subject><ispartof>Advanced robotics, 2014-09, Vol.28 (17), p.1151-1164</ispartof><rights>2014 Taylor & Francis and The Robotics Society of Japan 2014</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33</citedby><cites>FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33</cites><orcidid>0000-0002-2151-185X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04554557$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boudjedir, Hana</creatorcontrib><creatorcontrib>Bouhali, Omar</creatorcontrib><creatorcontrib>Rizoug, Nassim</creatorcontrib><title>Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle</title><title>Advanced robotics</title><description>This paper proposes an adaptive neural network control with neural state's observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of Sliding Mode Observer (SMO), a new neural observer is proposed to estimate the states. The aim of this work is to propose an observer insensitive to the measurement noise. The stability proof of global system is made by Lyapunov direct method. The adaptation laws of both artificial neural networks (ANNs) are derived from Lyapunov theory. The proposed controller is validated by simulation on the quadrotor under measurement noise conditions. A comparative study with SMO is made to highlight the performances of the proposed neural observer.</description><subject>adaptive control</subject><subject>Engineering Sciences</subject><subject>neuronal control and observer</subject><subject>noise rejection</subject><subject>quadrotor</subject><subject>sliding mode observers</subject><issn>0169-1864</issn><issn>1568-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKv_wMNePWxNNslucpJS1AoFL3o1TPNBV7dJTbYr_nuz1HoUBmbIPO9AHoSuCZ4RLPAtJrUkomazChM2k4QyKU7QhPBalJxTfoomI1KOzDm6SOkdYywYbSbobW5g17eDLbzdR-hy679C_Ch08H0MXbGGZE0R_HEf1snGwcbChVh87sHE0Odp77fgfSbBxjZjg920urOX6MxBl-zVb5-i14f7l8WyXD0_Pi3mq1JTRvrS8cY4DYIKU1tZaaYboFI2ldOU46qquTRgLNGNzTOhhAoqaVU7RqxYa0qn6OZwdwOd2sV2C_FbBWjVcr5S4xtmnOdqBpJZdmB1DClF6_4CBKvRpzr6VKNPdfCZY3eHWOvz17eQLXVG9fDdhegieN0mRf-98ANf7Xzb</recordid><startdate>20140902</startdate><enddate>20140902</enddate><creator>Boudjedir, Hana</creator><creator>Bouhali, Omar</creator><creator>Rizoug, Nassim</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2151-185X</orcidid></search><sort><creationdate>20140902</creationdate><title>Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle</title><author>Boudjedir, Hana ; Bouhali, Omar ; Rizoug, Nassim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>adaptive control</topic><topic>Engineering Sciences</topic><topic>neuronal control and observer</topic><topic>noise rejection</topic><topic>quadrotor</topic><topic>sliding mode observers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boudjedir, Hana</creatorcontrib><creatorcontrib>Bouhali, Omar</creatorcontrib><creatorcontrib>Rizoug, Nassim</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advanced robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boudjedir, Hana</au><au>Bouhali, Omar</au><au>Rizoug, Nassim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle</atitle><jtitle>Advanced robotics</jtitle><date>2014-09-02</date><risdate>2014</risdate><volume>28</volume><issue>17</issue><spage>1151</spage><epage>1164</epage><pages>1151-1164</pages><issn>0169-1864</issn><eissn>1568-5535</eissn><abstract>This paper proposes an adaptive neural network control with neural state's observer for quadrotor. The adaptive approach is used to solve the dynamics uncertainty problem of the controller. To perform the control, a Single Hidden Layer Neural Network (SHLNN) is used. Based on the structure of Sliding Mode Observer (SMO), a new neural observer is proposed to estimate the states. The aim of this work is to propose an observer insensitive to the measurement noise. The stability proof of global system is made by Lyapunov direct method. The adaptation laws of both artificial neural networks (ANNs) are derived from Lyapunov theory. The proposed controller is validated by simulation on the quadrotor under measurement noise conditions. A comparative study with SMO is made to highlight the performances of the proposed neural observer.</abstract><pub>Taylor & Francis</pub><doi>10.1080/01691864.2014.913498</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2151-185X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-1864 |
ispartof | Advanced robotics, 2014-09, Vol.28 (17), p.1151-1164 |
issn | 0169-1864 1568-5535 |
language | eng |
recordid | cdi_crossref_primary_10_1080_01691864_2014_913498 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | adaptive control Engineering Sciences neuronal control and observer noise rejection quadrotor sliding mode observers |
title | Adaptive neural network control based on neural observer for quadrotor unmanned aerial vehicle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A22%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20neural%20network%20control%20based%20on%20neural%20observer%20for%20quadrotor%20unmanned%20aerial%20vehicle&rft.jtitle=Advanced%20robotics&rft.au=Boudjedir,%20Hana&rft.date=2014-09-02&rft.volume=28&rft.issue=17&rft.spage=1151&rft.epage=1164&rft.pages=1151-1164&rft.issn=0169-1864&rft.eissn=1568-5535&rft_id=info:doi/10.1080/01691864.2014.913498&rft_dat=%3Chal_cross%3Eoai_HAL_hal_04554557v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c341t-f57dfca838d6e92c4c7a39972fc35022659dade1c7e2651313839326f41e8bc33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |