Loading…

Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots

A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot move...

Full description

Saved in:
Bibliographic Details
Published in:Advanced robotics 2016-01, Vol.30 (2), p.131-149
Main Authors: Wu, Meng-Hung, Ogawa, Shuhei, Konno, Atsushi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3
cites cdi_FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3
container_end_page 149
container_issue 2
container_start_page 131
container_title Advanced robotics
container_volume 30
creator Wu, Meng-Hung
Ogawa, Shuhei
Konno, Atsushi
description A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot moves. Therefore, if the leader robot moves fast (rapidly pulls or pushes the carried object), some of the follower humanoid robots may lose their balance and fall down. The symmetry type cooperation discussed in this paper solves this problem because it enables all humanoid robots to move synchronously. The proposed framework is verified by dynamic simulations.
doi_str_mv 10.1080/01691864.2015.1096212
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01691864_2015_1096212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815984339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3</originalsourceid><addsrcrecordid>eNp9kM1OxCAURonRxHH0EUxYuukMUOiUnWbiX2LiQl0ToKCMbalANX17aWbcuro3N-f7knsAuMRohVGN1ghXHNcVXRGEWT7ximByBBaYVXXBWMmOwWJmihk6BWcx7hBCNS03C_D5MnWdSWGCg48uOd-vrQ_awI9JBddA7fsUfAvzMe9-MEEm922gVzujE0xB9nHwIck5Csfo-nfYjW1yQ5s7xk72PrcEr3yK5-DEyjaai8Ncgre729ftQ_H0fP-4vXkqNK0ZKYhEG1Yp1VBLONO2qZpKcYMkNhxbvqmI3GjJGk65pZZSTLVWxlosLW6IUuUSXO17h-C_RhOT6FzUpm1lb_wYBa4x4_n9kmeU7VEdfIzBWDEE18kwCYzELFf8yRWzXHGQm3PX-5zrs5lO_vjQNiLJqfXBZifaRVH-X_ELkSGE8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815984339</pqid></control><display><type>article</type><title>Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots</title><source>Taylor and Francis Science and Technology Collection</source><creator>Wu, Meng-Hung ; Ogawa, Shuhei ; Konno, Atsushi</creator><creatorcontrib>Wu, Meng-Hung ; Ogawa, Shuhei ; Konno, Atsushi</creatorcontrib><description>A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot moves. Therefore, if the leader robot moves fast (rapidly pulls or pushes the carried object), some of the follower humanoid robots may lose their balance and fall down. The symmetry type cooperation discussed in this paper solves this problem because it enables all humanoid robots to move synchronously. The proposed framework is verified by dynamic simulations.</description><identifier>ISSN: 0169-1864</identifier><identifier>EISSN: 1568-5535</identifier><identifier>DOI: 10.1080/01691864.2015.1096212</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>Cooperation ; cooperative movement ; Followers ; force control ; Humanoid ; Humanoid robots ; Hybrid control ; Robots ; symmetric control ; Symmetry ; Tasks ; Transportation</subject><ispartof>Advanced robotics, 2016-01, Vol.30 (2), p.131-149</ispartof><rights>2015 Taylor &amp; Francis and The Robotics Society of Japan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3</citedby><cites>FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Meng-Hung</creatorcontrib><creatorcontrib>Ogawa, Shuhei</creatorcontrib><creatorcontrib>Konno, Atsushi</creatorcontrib><title>Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots</title><title>Advanced robotics</title><description>A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot moves. Therefore, if the leader robot moves fast (rapidly pulls or pushes the carried object), some of the follower humanoid robots may lose their balance and fall down. The symmetry type cooperation discussed in this paper solves this problem because it enables all humanoid robots to move synchronously. The proposed framework is verified by dynamic simulations.</description><subject>Cooperation</subject><subject>cooperative movement</subject><subject>Followers</subject><subject>force control</subject><subject>Humanoid</subject><subject>Humanoid robots</subject><subject>Hybrid control</subject><subject>Robots</subject><subject>symmetric control</subject><subject>Symmetry</subject><subject>Tasks</subject><subject>Transportation</subject><issn>0169-1864</issn><issn>1568-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OxCAURonRxHH0EUxYuukMUOiUnWbiX2LiQl0ToKCMbalANX17aWbcuro3N-f7knsAuMRohVGN1ghXHNcVXRGEWT7ximByBBaYVXXBWMmOwWJmihk6BWcx7hBCNS03C_D5MnWdSWGCg48uOd-vrQ_awI9JBddA7fsUfAvzMe9-MEEm922gVzujE0xB9nHwIck5Csfo-nfYjW1yQ5s7xk72PrcEr3yK5-DEyjaai8Ncgre729ftQ_H0fP-4vXkqNK0ZKYhEG1Yp1VBLONO2qZpKcYMkNhxbvqmI3GjJGk65pZZSTLVWxlosLW6IUuUSXO17h-C_RhOT6FzUpm1lb_wYBa4x4_n9kmeU7VEdfIzBWDEE18kwCYzELFf8yRWzXHGQm3PX-5zrs5lO_vjQNiLJqfXBZifaRVH-X_ELkSGE8w</recordid><startdate>20160117</startdate><enddate>20160117</enddate><creator>Wu, Meng-Hung</creator><creator>Ogawa, Shuhei</creator><creator>Konno, Atsushi</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160117</creationdate><title>Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots</title><author>Wu, Meng-Hung ; Ogawa, Shuhei ; Konno, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cooperation</topic><topic>cooperative movement</topic><topic>Followers</topic><topic>force control</topic><topic>Humanoid</topic><topic>Humanoid robots</topic><topic>Hybrid control</topic><topic>Robots</topic><topic>symmetric control</topic><topic>Symmetry</topic><topic>Tasks</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Meng-Hung</creatorcontrib><creatorcontrib>Ogawa, Shuhei</creatorcontrib><creatorcontrib>Konno, Atsushi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advanced robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Meng-Hung</au><au>Ogawa, Shuhei</au><au>Konno, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots</atitle><jtitle>Advanced robotics</jtitle><date>2016-01-17</date><risdate>2016</risdate><volume>30</volume><issue>2</issue><spage>131</spage><epage>149</epage><pages>131-149</pages><issn>0169-1864</issn><eissn>1568-5535</eissn><abstract>A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot moves. Therefore, if the leader robot moves fast (rapidly pulls or pushes the carried object), some of the follower humanoid robots may lose their balance and fall down. The symmetry type cooperation discussed in this paper solves this problem because it enables all humanoid robots to move synchronously. The proposed framework is verified by dynamic simulations.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/01691864.2015.1096212</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-1864
ispartof Advanced robotics, 2016-01, Vol.30 (2), p.131-149
issn 0169-1864
1568-5535
language eng
recordid cdi_crossref_primary_10_1080_01691864_2015_1096212
source Taylor and Francis Science and Technology Collection
subjects Cooperation
cooperative movement
Followers
force control
Humanoid
Humanoid robots
Hybrid control
Robots
symmetric control
Symmetry
Tasks
Transportation
title Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20position/force%20hybrid%20control%20for%20cooperative%20object%20transportation%20using%20multiple%20humanoid%20robots&rft.jtitle=Advanced%20robotics&rft.au=Wu,%20Meng-Hung&rft.date=2016-01-17&rft.volume=30&rft.issue=2&rft.spage=131&rft.epage=149&rft.pages=131-149&rft.issn=0169-1864&rft.eissn=1568-5535&rft_id=info:doi/10.1080/01691864.2015.1096212&rft_dat=%3Cproquest_cross%3E1815984339%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1815984339&rft_id=info:pmid/&rfr_iscdi=true