Loading…
Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots
A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot move...
Saved in:
Published in: | Advanced robotics 2016-01, Vol.30 (2), p.131-149 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3 |
container_end_page | 149 |
container_issue | 2 |
container_start_page | 131 |
container_title | Advanced robotics |
container_volume | 30 |
creator | Wu, Meng-Hung Ogawa, Shuhei Konno, Atsushi |
description | A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot moves. Therefore, if the leader robot moves fast (rapidly pulls or pushes the carried object), some of the follower humanoid robots may lose their balance and fall down. The symmetry type cooperation discussed in this paper solves this problem because it enables all humanoid robots to move synchronously. The proposed framework is verified by dynamic simulations. |
doi_str_mv | 10.1080/01691864.2015.1096212 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_01691864_2015_1096212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1815984339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3</originalsourceid><addsrcrecordid>eNp9kM1OxCAURonRxHH0EUxYuukMUOiUnWbiX2LiQl0ToKCMbalANX17aWbcuro3N-f7knsAuMRohVGN1ghXHNcVXRGEWT7ximByBBaYVXXBWMmOwWJmihk6BWcx7hBCNS03C_D5MnWdSWGCg48uOd-vrQ_awI9JBddA7fsUfAvzMe9-MEEm922gVzujE0xB9nHwIck5Csfo-nfYjW1yQ5s7xk72PrcEr3yK5-DEyjaai8Ncgre729ftQ_H0fP-4vXkqNK0ZKYhEG1Yp1VBLONO2qZpKcYMkNhxbvqmI3GjJGk65pZZSTLVWxlosLW6IUuUSXO17h-C_RhOT6FzUpm1lb_wYBa4x4_n9kmeU7VEdfIzBWDEE18kwCYzELFf8yRWzXHGQm3PX-5zrs5lO_vjQNiLJqfXBZifaRVH-X_ELkSGE8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1815984339</pqid></control><display><type>article</type><title>Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots</title><source>Taylor and Francis Science and Technology Collection</source><creator>Wu, Meng-Hung ; Ogawa, Shuhei ; Konno, Atsushi</creator><creatorcontrib>Wu, Meng-Hung ; Ogawa, Shuhei ; Konno, Atsushi</creatorcontrib><description>A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot moves. Therefore, if the leader robot moves fast (rapidly pulls or pushes the carried object), some of the follower humanoid robots may lose their balance and fall down. The symmetry type cooperation discussed in this paper solves this problem because it enables all humanoid robots to move synchronously. The proposed framework is verified by dynamic simulations.</description><identifier>ISSN: 0169-1864</identifier><identifier>EISSN: 1568-5535</identifier><identifier>DOI: 10.1080/01691864.2015.1096212</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Cooperation ; cooperative movement ; Followers ; force control ; Humanoid ; Humanoid robots ; Hybrid control ; Robots ; symmetric control ; Symmetry ; Tasks ; Transportation</subject><ispartof>Advanced robotics, 2016-01, Vol.30 (2), p.131-149</ispartof><rights>2015 Taylor & Francis and The Robotics Society of Japan 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3</citedby><cites>FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wu, Meng-Hung</creatorcontrib><creatorcontrib>Ogawa, Shuhei</creatorcontrib><creatorcontrib>Konno, Atsushi</creatorcontrib><title>Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots</title><title>Advanced robotics</title><description>A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot moves. Therefore, if the leader robot moves fast (rapidly pulls or pushes the carried object), some of the follower humanoid robots may lose their balance and fall down. The symmetry type cooperation discussed in this paper solves this problem because it enables all humanoid robots to move synchronously. The proposed framework is verified by dynamic simulations.</description><subject>Cooperation</subject><subject>cooperative movement</subject><subject>Followers</subject><subject>force control</subject><subject>Humanoid</subject><subject>Humanoid robots</subject><subject>Hybrid control</subject><subject>Robots</subject><subject>symmetric control</subject><subject>Symmetry</subject><subject>Tasks</subject><subject>Transportation</subject><issn>0169-1864</issn><issn>1568-5535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OxCAURonRxHH0EUxYuukMUOiUnWbiX2LiQl0ToKCMbalANX17aWbcuro3N-f7knsAuMRohVGN1ghXHNcVXRGEWT7ximByBBaYVXXBWMmOwWJmihk6BWcx7hBCNS03C_D5MnWdSWGCg48uOd-vrQ_awI9JBddA7fsUfAvzMe9-MEEm922gVzujE0xB9nHwIck5Csfo-nfYjW1yQ5s7xk72PrcEr3yK5-DEyjaai8Ncgre729ftQ_H0fP-4vXkqNK0ZKYhEG1Yp1VBLONO2qZpKcYMkNhxbvqmI3GjJGk65pZZSTLVWxlosLW6IUuUSXO17h-C_RhOT6FzUpm1lb_wYBa4x4_n9kmeU7VEdfIzBWDEE18kwCYzELFf8yRWzXHGQm3PX-5zrs5lO_vjQNiLJqfXBZifaRVH-X_ELkSGE8w</recordid><startdate>20160117</startdate><enddate>20160117</enddate><creator>Wu, Meng-Hung</creator><creator>Ogawa, Shuhei</creator><creator>Konno, Atsushi</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160117</creationdate><title>Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots</title><author>Wu, Meng-Hung ; Ogawa, Shuhei ; Konno, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cooperation</topic><topic>cooperative movement</topic><topic>Followers</topic><topic>force control</topic><topic>Humanoid</topic><topic>Humanoid robots</topic><topic>Hybrid control</topic><topic>Robots</topic><topic>symmetric control</topic><topic>Symmetry</topic><topic>Tasks</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Meng-Hung</creatorcontrib><creatorcontrib>Ogawa, Shuhei</creatorcontrib><creatorcontrib>Konno, Atsushi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advanced robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Meng-Hung</au><au>Ogawa, Shuhei</au><au>Konno, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots</atitle><jtitle>Advanced robotics</jtitle><date>2016-01-17</date><risdate>2016</risdate><volume>30</volume><issue>2</issue><spage>131</spage><epage>149</epage><pages>131-149</pages><issn>0169-1864</issn><eissn>1568-5535</eissn><abstract>A symmetry position/force hybrid control framework for cooperative object transportation tasks with multiple humanoid robots is proposed in this paper. In a leader-follower type cooperation, follower robots plan their biped gaits based on the forces generated at their hands after a leader robot moves. Therefore, if the leader robot moves fast (rapidly pulls or pushes the carried object), some of the follower humanoid robots may lose their balance and fall down. The symmetry type cooperation discussed in this paper solves this problem because it enables all humanoid robots to move synchronously. The proposed framework is verified by dynamic simulations.</abstract><pub>Taylor & Francis</pub><doi>10.1080/01691864.2015.1096212</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-1864 |
ispartof | Advanced robotics, 2016-01, Vol.30 (2), p.131-149 |
issn | 0169-1864 1568-5535 |
language | eng |
recordid | cdi_crossref_primary_10_1080_01691864_2015_1096212 |
source | Taylor and Francis Science and Technology Collection |
subjects | Cooperation cooperative movement Followers force control Humanoid Humanoid robots Hybrid control Robots symmetric control Symmetry Tasks Transportation |
title | Symmetry position/force hybrid control for cooperative object transportation using multiple humanoid robots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Symmetry%20position/force%20hybrid%20control%20for%20cooperative%20object%20transportation%20using%20multiple%20humanoid%20robots&rft.jtitle=Advanced%20robotics&rft.au=Wu,%20Meng-Hung&rft.date=2016-01-17&rft.volume=30&rft.issue=2&rft.spage=131&rft.epage=149&rft.pages=131-149&rft.issn=0169-1864&rft.eissn=1568-5535&rft_id=info:doi/10.1080/01691864.2015.1096212&rft_dat=%3Cproquest_cross%3E1815984339%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4852-2a0756bbd4f295cfd6d6b9e0a1e91f9762a7ca5d949f4f4414ccbeff1af1d2bb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1815984339&rft_id=info:pmid/&rfr_iscdi=true |