Loading…

The effect of steam treatment on bonding strength of impregnated wood materials

In wood materials, the species of wood, its humidity, and the type of the adhesive have an important role to make the wood material durable for a long period both in inner space and outer space. In this study, it is aimed to determine the resistance characteristics of adhesive using different impreg...

Full description

Saved in:
Bibliographic Details
Published in:Journal of adhesion science and technology 2013-04, Vol.27 (8), p.896-904
Main Authors: Uysal, Burhanettin, Yorur, Huseyin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In wood materials, the species of wood, its humidity, and the type of the adhesive have an important role to make the wood material durable for a long period both in inner space and outer space. In this study, it is aimed to determine the resistance characteristics of adhesive using different impregnation chemicals and different types of adhesives before and after steam treatment. In this study, beech and poplar as wood materials; mixture of Protim-WR 235, Tanalith-C, and Celcure-AC 500 as impregnation materials; and poly vinyl acetate (PVAc), urea formaldehyde (UF), and desmodur vinyl trie ketonol acetate (D-VTKA), resistant to water, as adhesives materials were used. All samples were kept in a steaming equipment for 2, 6, 12, 24, 48, and 96 h, afterwards the maximum force of the samples were measured for each waiting period, and then their bonding strength was determined. According to the results of the study, beech control samples had higher strength than poplar control samples. Control samples bonded with D-VTKA is the least affected one compared to all original control samples in the steam test. D-VTKA can be offered as the proper adhesive for humid places. The results also showed that Tanalith-C is the least affecting impregnation material on the bonding strength.
ISSN:0169-4243
1568-5616
DOI:10.1080/01694243.2012.727161