Loading…

On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta

We consider the orthogonally invariant estimation problem of the inverse of the scale matrix of Wishart distribution using Stein's loss (entropy loss). In this problem Krishnamoorthy and Gupta [2] proposed an estimator and showed its good performance in a Monte Carlo simulation. They conjecture...

Full description

Saved in:
Bibliographic Details
Published in:Statistics (Berlin, DDR) DDR), 2003-09, Vol.37 (5), p.387-399
Main Author: Sheena†, Yo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3
cites cdi_FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3
container_end_page 399
container_issue 5
container_start_page 387
container_title Statistics (Berlin, DDR)
container_volume 37
creator Sheena†, Yo
description We consider the orthogonally invariant estimation problem of the inverse of the scale matrix of Wishart distribution using Stein's loss (entropy loss). In this problem Krishnamoorthy and Gupta [2] proposed an estimator and showed its good performance in a Monte Carlo simulation. They conjectured their estimator is minimax. Perron [3] proved its minimaxity for p = 2. In this paper we prove it for p = 3 by using a new method.
doi_str_mv 10.1080/02331880310001598846
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02331880310001598846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_02331880310001598846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3</originalsourceid><addsrcrecordid>eNqFkMFKxDAQhoMouK6-gYe8QHXSpG3qRWTRVVxYED2XMU3YSNssScTt25uye1z0NJfvm_nnJ-SawQ0DCbeQc86kBM4AgBW1lKI8ITMGeZ2JmsEpmU1Ilhh5Ti5C-EpcyXk1I2_rgfZ2sD3ubBypMzRuNB2c77GjW6-VDdYlBKO3O6pDTGR0fgJfvQ2bAXvnfNyMFIeWLr-3ES_JmcEu6KvDnJOPp8f3xXO2Wi9fFg-rTIk8j5mUTLdYMYmyxZSm0gUIhUa0kkvBqiJHjp-G14XIWatNCUwUFYhaKa6xVHxOxH6v8i4Er02z9SmdHxsGzdRLc6yXpN3tNTuY6c0f57u2iTh2zhuPQ_r4qNjEXUzy_b8y__P8L_fjfOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta</title><source>Taylor and Francis Science and Technology Collection</source><creator>Sheena†, Yo</creator><creatorcontrib>Sheena†, Yo</creatorcontrib><description>We consider the orthogonally invariant estimation problem of the inverse of the scale matrix of Wishart distribution using Stein's loss (entropy loss). In this problem Krishnamoorthy and Gupta [2] proposed an estimator and showed its good performance in a Monte Carlo simulation. They conjectured their estimator is minimax. Perron [3] proved its minimaxity for p = 2. In this paper we prove it for p = 3 by using a new method.</description><identifier>ISSN: 0233-1888</identifier><identifier>EISSN: 1029-4910</identifier><identifier>DOI: 10.1080/02331880310001598846</identifier><language>eng</language><publisher>Taylor &amp; Francis Group</publisher><subject>Minimax ; Orthogonally invariant estimator ; Precision matrix ; Stein's loss ; Wishart distribution</subject><ispartof>Statistics (Berlin, DDR), 2003-09, Vol.37 (5), p.387-399</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3</citedby><cites>FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sheena†, Yo</creatorcontrib><title>On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta</title><title>Statistics (Berlin, DDR)</title><description>We consider the orthogonally invariant estimation problem of the inverse of the scale matrix of Wishart distribution using Stein's loss (entropy loss). In this problem Krishnamoorthy and Gupta [2] proposed an estimator and showed its good performance in a Monte Carlo simulation. They conjectured their estimator is minimax. Perron [3] proved its minimaxity for p = 2. In this paper we prove it for p = 3 by using a new method.</description><subject>Minimax</subject><subject>Orthogonally invariant estimator</subject><subject>Precision matrix</subject><subject>Stein's loss</subject><subject>Wishart distribution</subject><issn>0233-1888</issn><issn>1029-4910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKxDAQhoMouK6-gYe8QHXSpG3qRWTRVVxYED2XMU3YSNssScTt25uye1z0NJfvm_nnJ-SawQ0DCbeQc86kBM4AgBW1lKI8ITMGeZ2JmsEpmU1Ilhh5Ti5C-EpcyXk1I2_rgfZ2sD3ubBypMzRuNB2c77GjW6-VDdYlBKO3O6pDTGR0fgJfvQ2bAXvnfNyMFIeWLr-3ES_JmcEu6KvDnJOPp8f3xXO2Wi9fFg-rTIk8j5mUTLdYMYmyxZSm0gUIhUa0kkvBqiJHjp-G14XIWatNCUwUFYhaKa6xVHxOxH6v8i4Er02z9SmdHxsGzdRLc6yXpN3tNTuY6c0f57u2iTh2zhuPQ_r4qNjEXUzy_b8y__P8L_fjfOU</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Sheena†, Yo</creator><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030901</creationdate><title>On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta</title><author>Sheena†, Yo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Minimax</topic><topic>Orthogonally invariant estimator</topic><topic>Precision matrix</topic><topic>Stein's loss</topic><topic>Wishart distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheena†, Yo</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics (Berlin, DDR)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheena†, Yo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta</atitle><jtitle>Statistics (Berlin, DDR)</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>37</volume><issue>5</issue><spage>387</spage><epage>399</epage><pages>387-399</pages><issn>0233-1888</issn><eissn>1029-4910</eissn><abstract>We consider the orthogonally invariant estimation problem of the inverse of the scale matrix of Wishart distribution using Stein's loss (entropy loss). In this problem Krishnamoorthy and Gupta [2] proposed an estimator and showed its good performance in a Monte Carlo simulation. They conjectured their estimator is minimax. Perron [3] proved its minimaxity for p = 2. In this paper we prove it for p = 3 by using a new method.</abstract><pub>Taylor &amp; Francis Group</pub><doi>10.1080/02331880310001598846</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0233-1888
ispartof Statistics (Berlin, DDR), 2003-09, Vol.37 (5), p.387-399
issn 0233-1888
1029-4910
language eng
recordid cdi_crossref_primary_10_1080_02331880310001598846
source Taylor and Francis Science and Technology Collection
subjects Minimax
Orthogonally invariant estimator
Precision matrix
Stein's loss
Wishart distribution
title On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20minimaxity%20of%20the%20normal%20precision%20matrix%20estimator%20of%20Krishnamoorthy%20and%20Gupta&rft.jtitle=Statistics%20(Berlin,%20DDR)&rft.au=Sheena%E2%80%A0,%20Yo&rft.date=2003-09-01&rft.volume=37&rft.issue=5&rft.spage=387&rft.epage=399&rft.pages=387-399&rft.issn=0233-1888&rft.eissn=1029-4910&rft_id=info:doi/10.1080/02331880310001598846&rft_dat=%3Ccrossref_infor%3E10_1080_02331880310001598846%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true