Loading…
On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta
We consider the orthogonally invariant estimation problem of the inverse of the scale matrix of Wishart distribution using Stein's loss (entropy loss). In this problem Krishnamoorthy and Gupta [2] proposed an estimator and showed its good performance in a Monte Carlo simulation. They conjecture...
Saved in:
Published in: | Statistics (Berlin, DDR) DDR), 2003-09, Vol.37 (5), p.387-399 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3 |
container_end_page | 399 |
container_issue | 5 |
container_start_page | 387 |
container_title | Statistics (Berlin, DDR) |
container_volume | 37 |
creator | Sheena†, Yo |
description | We consider the orthogonally invariant estimation problem of the inverse of the scale matrix of Wishart distribution using Stein's loss (entropy loss). In this problem Krishnamoorthy and Gupta
[2]
proposed an estimator and showed its good performance in a Monte Carlo simulation. They conjectured their estimator is minimax. Perron
[3]
proved its minimaxity for p = 2. In this paper we prove it for p = 3 by using a new method. |
doi_str_mv | 10.1080/02331880310001598846 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02331880310001598846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_02331880310001598846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3</originalsourceid><addsrcrecordid>eNqFkMFKxDAQhoMouK6-gYe8QHXSpG3qRWTRVVxYED2XMU3YSNssScTt25uye1z0NJfvm_nnJ-SawQ0DCbeQc86kBM4AgBW1lKI8ITMGeZ2JmsEpmU1Ilhh5Ti5C-EpcyXk1I2_rgfZ2sD3ubBypMzRuNB2c77GjW6-VDdYlBKO3O6pDTGR0fgJfvQ2bAXvnfNyMFIeWLr-3ES_JmcEu6KvDnJOPp8f3xXO2Wi9fFg-rTIk8j5mUTLdYMYmyxZSm0gUIhUa0kkvBqiJHjp-G14XIWatNCUwUFYhaKa6xVHxOxH6v8i4Er02z9SmdHxsGzdRLc6yXpN3tNTuY6c0f57u2iTh2zhuPQ_r4qNjEXUzy_b8y__P8L_fjfOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta</title><source>Taylor and Francis Science and Technology Collection</source><creator>Sheena†, Yo</creator><creatorcontrib>Sheena†, Yo</creatorcontrib><description>We consider the orthogonally invariant estimation problem of the inverse of the scale matrix of Wishart distribution using Stein's loss (entropy loss). In this problem Krishnamoorthy and Gupta
[2]
proposed an estimator and showed its good performance in a Monte Carlo simulation. They conjectured their estimator is minimax. Perron
[3]
proved its minimaxity for p = 2. In this paper we prove it for p = 3 by using a new method.</description><identifier>ISSN: 0233-1888</identifier><identifier>EISSN: 1029-4910</identifier><identifier>DOI: 10.1080/02331880310001598846</identifier><language>eng</language><publisher>Taylor & Francis Group</publisher><subject>Minimax ; Orthogonally invariant estimator ; Precision matrix ; Stein's loss ; Wishart distribution</subject><ispartof>Statistics (Berlin, DDR), 2003-09, Vol.37 (5), p.387-399</ispartof><rights>Copyright Taylor & Francis Group, LLC 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3</citedby><cites>FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sheena†, Yo</creatorcontrib><title>On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta</title><title>Statistics (Berlin, DDR)</title><description>We consider the orthogonally invariant estimation problem of the inverse of the scale matrix of Wishart distribution using Stein's loss (entropy loss). In this problem Krishnamoorthy and Gupta
[2]
proposed an estimator and showed its good performance in a Monte Carlo simulation. They conjectured their estimator is minimax. Perron
[3]
proved its minimaxity for p = 2. In this paper we prove it for p = 3 by using a new method.</description><subject>Minimax</subject><subject>Orthogonally invariant estimator</subject><subject>Precision matrix</subject><subject>Stein's loss</subject><subject>Wishart distribution</subject><issn>0233-1888</issn><issn>1029-4910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKxDAQhoMouK6-gYe8QHXSpG3qRWTRVVxYED2XMU3YSNssScTt25uye1z0NJfvm_nnJ-SawQ0DCbeQc86kBM4AgBW1lKI8ITMGeZ2JmsEpmU1Ilhh5Ti5C-EpcyXk1I2_rgfZ2sD3ubBypMzRuNB2c77GjW6-VDdYlBKO3O6pDTGR0fgJfvQ2bAXvnfNyMFIeWLr-3ES_JmcEu6KvDnJOPp8f3xXO2Wi9fFg-rTIk8j5mUTLdYMYmyxZSm0gUIhUa0kkvBqiJHjp-G14XIWatNCUwUFYhaKa6xVHxOxH6v8i4Er02z9SmdHxsGzdRLc6yXpN3tNTuY6c0f57u2iTh2zhuPQ_r4qNjEXUzy_b8y__P8L_fjfOU</recordid><startdate>20030901</startdate><enddate>20030901</enddate><creator>Sheena†, Yo</creator><general>Taylor & Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20030901</creationdate><title>On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta</title><author>Sheena†, Yo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Minimax</topic><topic>Orthogonally invariant estimator</topic><topic>Precision matrix</topic><topic>Stein's loss</topic><topic>Wishart distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sheena†, Yo</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics (Berlin, DDR)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sheena†, Yo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta</atitle><jtitle>Statistics (Berlin, DDR)</jtitle><date>2003-09-01</date><risdate>2003</risdate><volume>37</volume><issue>5</issue><spage>387</spage><epage>399</epage><pages>387-399</pages><issn>0233-1888</issn><eissn>1029-4910</eissn><abstract>We consider the orthogonally invariant estimation problem of the inverse of the scale matrix of Wishart distribution using Stein's loss (entropy loss). In this problem Krishnamoorthy and Gupta
[2]
proposed an estimator and showed its good performance in a Monte Carlo simulation. They conjectured their estimator is minimax. Perron
[3]
proved its minimaxity for p = 2. In this paper we prove it for p = 3 by using a new method.</abstract><pub>Taylor & Francis Group</pub><doi>10.1080/02331880310001598846</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0233-1888 |
ispartof | Statistics (Berlin, DDR), 2003-09, Vol.37 (5), p.387-399 |
issn | 0233-1888 1029-4910 |
language | eng |
recordid | cdi_crossref_primary_10_1080_02331880310001598846 |
source | Taylor and Francis Science and Technology Collection |
subjects | Minimax Orthogonally invariant estimator Precision matrix Stein's loss Wishart distribution |
title | On minimaxity of the normal precision matrix estimator of Krishnamoorthy and Gupta |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20minimaxity%20of%20the%20normal%20precision%20matrix%20estimator%20of%20Krishnamoorthy%20and%20Gupta&rft.jtitle=Statistics%20(Berlin,%20DDR)&rft.au=Sheena%E2%80%A0,%20Yo&rft.date=2003-09-01&rft.volume=37&rft.issue=5&rft.spage=387&rft.epage=399&rft.pages=387-399&rft.issn=0233-1888&rft.eissn=1029-4910&rft_id=info:doi/10.1080/02331880310001598846&rft_dat=%3Ccrossref_infor%3E10_1080_02331880310001598846%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-881eda718a8da0637e504caf4d83841752a3abf395421def601457049cc3ea6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |