Loading…

A method for constructing higher-dimensional copulas

For every n≥3, a method is introduced and investigated for generating n-dimensional copulas starting with an (n−1)-dimensional copula already known. These copulas are particularly useful when the behaviour of a random vector (X 1 , X 2 , ..., X n−1 ) formed by n−1 components is known, but another ra...

Full description

Saved in:
Bibliographic Details
Published in:Statistics (Berlin, DDR) DDR), 2012-06, Vol.46 (3), p.387-404
Main Authors: Durante, Fabrizio, Foscolo, Enrico, Rodríguez-Lallena, José Antonio, Úbeda-Flores, Manuel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-538a2dff500baf75e690ed51a244818ea795240b96d61bde66289d08b330e18f3
cites cdi_FETCH-LOGICAL-c335t-538a2dff500baf75e690ed51a244818ea795240b96d61bde66289d08b330e18f3
container_end_page 404
container_issue 3
container_start_page 387
container_title Statistics (Berlin, DDR)
container_volume 46
creator Durante, Fabrizio
Foscolo, Enrico
Rodríguez-Lallena, José Antonio
Úbeda-Flores, Manuel
description For every n≥3, a method is introduced and investigated for generating n-dimensional copulas starting with an (n−1)-dimensional copula already known. These copulas are particularly useful when the behaviour of a random vector (X 1 , X 2 , ..., X n−1 ) formed by n−1 components is known, but another random variable, say X n , should be included into the model. An illustration of the usefulness of this construction is presented, showing some of its computational features.
doi_str_mv 10.1080/02331888.2010.535903
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02331888_2010_535903</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009326759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-538a2dff500baf75e690ed51a244818ea795240b96d61bde66289d08b330e18f3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gYeC566TpEmTkyyLrsKCFz2HtEl2s7TNmrTIvr0t1aungZnvH2Y-hO4xrDAIeARCKRZCrAiMLUaZBHqBFhiIzAuJ4RItJiSfmGt0k9IRADil5QIV66y1_SGYzIWY1aFLfRzq3nf77OD3Bxtz41vbJR863Yzz09DodIuunG6SvfutS_T58vyxec1379u3zXqX15SyPmdUaGKcYwCVdiWzXII1DGtSFAILq0vJSAGV5IbjyljOiZAGREUpWCwcXaKHee8phq_Bpl4dwxDHQ5IiAJISXjI5UsVM1TGkFK1Tp-hbHc8Kg5r8qD8_avKjZj9j7GmO-W58vdXfITZG9frchOii7mqfFP13ww_vJWqf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009326759</pqid></control><display><type>article</type><title>A method for constructing higher-dimensional copulas</title><source>Taylor and Francis Science and Technology Collection</source><creator>Durante, Fabrizio ; Foscolo, Enrico ; Rodríguez-Lallena, José Antonio ; Úbeda-Flores, Manuel</creator><creatorcontrib>Durante, Fabrizio ; Foscolo, Enrico ; Rodríguez-Lallena, José Antonio ; Úbeda-Flores, Manuel</creatorcontrib><description>For every n≥3, a method is introduced and investigated for generating n-dimensional copulas starting with an (n−1)-dimensional copula already known. These copulas are particularly useful when the behaviour of a random vector (X 1 , X 2 , ..., X n−1 ) formed by n−1 components is known, but another random variable, say X n , should be included into the model. An illustration of the usefulness of this construction is presented, showing some of its computational features.</description><identifier>ISSN: 0233-1888</identifier><identifier>EISSN: 1029-4910</identifier><identifier>DOI: 10.1080/02331888.2010.535903</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Construction methods ; copula ; Farlie-Gumbel-Morgenstern distribution ; Random variables ; sampling procedure</subject><ispartof>Statistics (Berlin, DDR), 2012-06, Vol.46 (3), p.387-404</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2012</rights><rights>Copyright Taylor and Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-538a2dff500baf75e690ed51a244818ea795240b96d61bde66289d08b330e18f3</citedby><cites>FETCH-LOGICAL-c335t-538a2dff500baf75e690ed51a244818ea795240b96d61bde66289d08b330e18f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27900,27901</link.rule.ids></links><search><creatorcontrib>Durante, Fabrizio</creatorcontrib><creatorcontrib>Foscolo, Enrico</creatorcontrib><creatorcontrib>Rodríguez-Lallena, José Antonio</creatorcontrib><creatorcontrib>Úbeda-Flores, Manuel</creatorcontrib><title>A method for constructing higher-dimensional copulas</title><title>Statistics (Berlin, DDR)</title><description>For every n≥3, a method is introduced and investigated for generating n-dimensional copulas starting with an (n−1)-dimensional copula already known. These copulas are particularly useful when the behaviour of a random vector (X 1 , X 2 , ..., X n−1 ) formed by n−1 components is known, but another random variable, say X n , should be included into the model. An illustration of the usefulness of this construction is presented, showing some of its computational features.</description><subject>Construction methods</subject><subject>copula</subject><subject>Farlie-Gumbel-Morgenstern distribution</subject><subject>Random variables</subject><subject>sampling procedure</subject><issn>0233-1888</issn><issn>1029-4910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gYeC566TpEmTkyyLrsKCFz2HtEl2s7TNmrTIvr0t1aungZnvH2Y-hO4xrDAIeARCKRZCrAiMLUaZBHqBFhiIzAuJ4RItJiSfmGt0k9IRADil5QIV66y1_SGYzIWY1aFLfRzq3nf77OD3Bxtz41vbJR863Yzz09DodIuunG6SvfutS_T58vyxec1379u3zXqX15SyPmdUaGKcYwCVdiWzXII1DGtSFAILq0vJSAGV5IbjyljOiZAGREUpWCwcXaKHee8phq_Bpl4dwxDHQ5IiAJISXjI5UsVM1TGkFK1Tp-hbHc8Kg5r8qD8_avKjZj9j7GmO-W58vdXfITZG9frchOii7mqfFP13ww_vJWqf</recordid><startdate>201206</startdate><enddate>201206</enddate><creator>Durante, Fabrizio</creator><creator>Foscolo, Enrico</creator><creator>Rodríguez-Lallena, José Antonio</creator><creator>Úbeda-Flores, Manuel</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201206</creationdate><title>A method for constructing higher-dimensional copulas</title><author>Durante, Fabrizio ; Foscolo, Enrico ; Rodríguez-Lallena, José Antonio ; Úbeda-Flores, Manuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-538a2dff500baf75e690ed51a244818ea795240b96d61bde66289d08b330e18f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Construction methods</topic><topic>copula</topic><topic>Farlie-Gumbel-Morgenstern distribution</topic><topic>Random variables</topic><topic>sampling procedure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durante, Fabrizio</creatorcontrib><creatorcontrib>Foscolo, Enrico</creatorcontrib><creatorcontrib>Rodríguez-Lallena, José Antonio</creatorcontrib><creatorcontrib>Úbeda-Flores, Manuel</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics (Berlin, DDR)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durante, Fabrizio</au><au>Foscolo, Enrico</au><au>Rodríguez-Lallena, José Antonio</au><au>Úbeda-Flores, Manuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A method for constructing higher-dimensional copulas</atitle><jtitle>Statistics (Berlin, DDR)</jtitle><date>2012-06</date><risdate>2012</risdate><volume>46</volume><issue>3</issue><spage>387</spage><epage>404</epage><pages>387-404</pages><issn>0233-1888</issn><eissn>1029-4910</eissn><abstract>For every n≥3, a method is introduced and investigated for generating n-dimensional copulas starting with an (n−1)-dimensional copula already known. These copulas are particularly useful when the behaviour of a random vector (X 1 , X 2 , ..., X n−1 ) formed by n−1 components is known, but another random variable, say X n , should be included into the model. An illustration of the usefulness of this construction is presented, showing some of its computational features.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02331888.2010.535903</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0233-1888
ispartof Statistics (Berlin, DDR), 2012-06, Vol.46 (3), p.387-404
issn 0233-1888
1029-4910
language eng
recordid cdi_crossref_primary_10_1080_02331888_2010_535903
source Taylor and Francis Science and Technology Collection
subjects Construction methods
copula
Farlie-Gumbel-Morgenstern distribution
Random variables
sampling procedure
title A method for constructing higher-dimensional copulas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T17%3A02%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20method%20for%20constructing%20higher-dimensional%20copulas&rft.jtitle=Statistics%20(Berlin,%20DDR)&rft.au=Durante,%20Fabrizio&rft.date=2012-06&rft.volume=46&rft.issue=3&rft.spage=387&rft.epage=404&rft.pages=387-404&rft.issn=0233-1888&rft.eissn=1029-4910&rft_id=info:doi/10.1080/02331888.2010.535903&rft_dat=%3Cproquest_cross%3E2009326759%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-538a2dff500baf75e690ed51a244818ea795240b96d61bde66289d08b330e18f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009326759&rft_id=info:pmid/&rfr_iscdi=true