Loading…

On least absolute deviation estimators for one-dimensional chirp model

It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one-dimensional chirp signal model under independent and identically distri...

Full description

Saved in:
Bibliographic Details
Published in:Statistics (Berlin, DDR) DDR), 2014-03, Vol.48 (2), p.405-420
Main Authors: Lahiri, Ananya, Kundu, Debasis, Mitra, Amit
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393
cites cdi_FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393
container_end_page 420
container_issue 2
container_start_page 405
container_title Statistics (Berlin, DDR)
container_volume 48
creator Lahiri, Ananya
Kundu, Debasis
Mitra, Amit
description It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one-dimensional chirp signal model under independent and identically distributed error structure. The proposed estimators are strongly consistent and it is observed that the asymptotic distribution of the LAD estimators are normally distributed. We perform some simulation studies to verify the asymptotic theory for small sample sizes and the performance are quite satisfactory.
doi_str_mv 10.1080/02331888.2012.719519
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02331888_2012_719519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009328158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqXwDxgsMac8x0mdTAhVFJAqdYHZerEd4cqJi52A-u9xFFiZ3vC-O90dIbcMVgwquIecc1ZV1SoHlq8Eq0tWn5EFg7zOiprBOVlMSDYxl-QqxgMArDkXC7Ld99QZjAPFJno3DoZq82VxsL6nJg62w8GHSFsfqO9Npm1n-pie6Kj6sOFIO6-NuyYXLbpobn7vkrxvn942L9lu__y6edxlivNyyFpeIMcaEQ1LwRpueC1aoRXTQuSNEYUosSqadcMaDQhlmVBUZWu0UonlS3I3-x6D_xxTPnnwY0hhoswBap5XrKwSVcyUCj7GYFp5DKlIOEkGclpM_i0mp8XkvFiSPcwy26e6HX774LQc8OR8aAP2ykbJ_3X4AcPVc0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009328158</pqid></control><display><type>article</type><title>On least absolute deviation estimators for one-dimensional chirp model</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Lahiri, Ananya ; Kundu, Debasis ; Mitra, Amit</creator><creatorcontrib>Lahiri, Ananya ; Kundu, Debasis ; Mitra, Amit</creatorcontrib><description>It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one-dimensional chirp signal model under independent and identically distributed error structure. The proposed estimators are strongly consistent and it is observed that the asymptotic distribution of the LAD estimators are normally distributed. We perform some simulation studies to verify the asymptotic theory for small sample sizes and the performance are quite satisfactory.</description><identifier>ISSN: 0233-1888</identifier><identifier>EISSN: 1029-4910</identifier><identifier>DOI: 10.1080/02331888.2012.719519</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>asymptotic distribution ; Chirp signals ; Computer simulation ; Deviation ; Economic models ; Estimating techniques ; Estimators ; least absolute deviation estimators ; Parameter estimation ; Regression analysis ; strong consistency</subject><ispartof>Statistics (Berlin, DDR), 2014-03, Vol.48 (2), p.405-420</ispartof><rights>2012 Taylor &amp; Francis 2012</rights><rights>2012 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393</citedby><cites>FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lahiri, Ananya</creatorcontrib><creatorcontrib>Kundu, Debasis</creatorcontrib><creatorcontrib>Mitra, Amit</creatorcontrib><title>On least absolute deviation estimators for one-dimensional chirp model</title><title>Statistics (Berlin, DDR)</title><description>It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one-dimensional chirp signal model under independent and identically distributed error structure. The proposed estimators are strongly consistent and it is observed that the asymptotic distribution of the LAD estimators are normally distributed. We perform some simulation studies to verify the asymptotic theory for small sample sizes and the performance are quite satisfactory.</description><subject>asymptotic distribution</subject><subject>Chirp signals</subject><subject>Computer simulation</subject><subject>Deviation</subject><subject>Economic models</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>least absolute deviation estimators</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>strong consistency</subject><issn>0233-1888</issn><issn>1029-4910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhC0EEqXwDxgsMac8x0mdTAhVFJAqdYHZerEd4cqJi52A-u9xFFiZ3vC-O90dIbcMVgwquIecc1ZV1SoHlq8Eq0tWn5EFg7zOiprBOVlMSDYxl-QqxgMArDkXC7Ld99QZjAPFJno3DoZq82VxsL6nJg62w8GHSFsfqO9Npm1n-pie6Kj6sOFIO6-NuyYXLbpobn7vkrxvn942L9lu__y6edxlivNyyFpeIMcaEQ1LwRpueC1aoRXTQuSNEYUosSqadcMaDQhlmVBUZWu0UonlS3I3-x6D_xxTPnnwY0hhoswBap5XrKwSVcyUCj7GYFp5DKlIOEkGclpM_i0mp8XkvFiSPcwy26e6HX774LQc8OR8aAP2ykbJ_3X4AcPVc0Y</recordid><startdate>20140304</startdate><enddate>20140304</enddate><creator>Lahiri, Ananya</creator><creator>Kundu, Debasis</creator><creator>Mitra, Amit</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140304</creationdate><title>On least absolute deviation estimators for one-dimensional chirp model</title><author>Lahiri, Ananya ; Kundu, Debasis ; Mitra, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>asymptotic distribution</topic><topic>Chirp signals</topic><topic>Computer simulation</topic><topic>Deviation</topic><topic>Economic models</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>least absolute deviation estimators</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>strong consistency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahiri, Ananya</creatorcontrib><creatorcontrib>Kundu, Debasis</creatorcontrib><creatorcontrib>Mitra, Amit</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics (Berlin, DDR)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahiri, Ananya</au><au>Kundu, Debasis</au><au>Mitra, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On least absolute deviation estimators for one-dimensional chirp model</atitle><jtitle>Statistics (Berlin, DDR)</jtitle><date>2014-03-04</date><risdate>2014</risdate><volume>48</volume><issue>2</issue><spage>405</spage><epage>420</epage><pages>405-420</pages><issn>0233-1888</issn><eissn>1029-4910</eissn><abstract>It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one-dimensional chirp signal model under independent and identically distributed error structure. The proposed estimators are strongly consistent and it is observed that the asymptotic distribution of the LAD estimators are normally distributed. We perform some simulation studies to verify the asymptotic theory for small sample sizes and the performance are quite satisfactory.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02331888.2012.719519</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0233-1888
ispartof Statistics (Berlin, DDR), 2014-03, Vol.48 (2), p.405-420
issn 0233-1888
1029-4910
language eng
recordid cdi_crossref_primary_10_1080_02331888_2012_719519
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects asymptotic distribution
Chirp signals
Computer simulation
Deviation
Economic models
Estimating techniques
Estimators
least absolute deviation estimators
Parameter estimation
Regression analysis
strong consistency
title On least absolute deviation estimators for one-dimensional chirp model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20least%20absolute%20deviation%20estimators%20for%20one-dimensional%20chirp%20model&rft.jtitle=Statistics%20(Berlin,%20DDR)&rft.au=Lahiri,%20Ananya&rft.date=2014-03-04&rft.volume=48&rft.issue=2&rft.spage=405&rft.epage=420&rft.pages=405-420&rft.issn=0233-1888&rft.eissn=1029-4910&rft_id=info:doi/10.1080/02331888.2012.719519&rft_dat=%3Cproquest_cross%3E2009328158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009328158&rft_id=info:pmid/&rfr_iscdi=true