Loading…
On least absolute deviation estimators for one-dimensional chirp model
It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one-dimensional chirp signal model under independent and identically distri...
Saved in:
Published in: | Statistics (Berlin, DDR) DDR), 2014-03, Vol.48 (2), p.405-420 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393 |
container_end_page | 420 |
container_issue | 2 |
container_start_page | 405 |
container_title | Statistics (Berlin, DDR) |
container_volume | 48 |
creator | Lahiri, Ananya Kundu, Debasis Mitra, Amit |
description | It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one-dimensional chirp signal model under independent and identically distributed error structure. The proposed estimators are strongly consistent and it is observed that the asymptotic distribution of the LAD estimators are normally distributed. We perform some simulation studies to verify the asymptotic theory for small sample sizes and the performance are quite satisfactory. |
doi_str_mv | 10.1080/02331888.2012.719519 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02331888_2012_719519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2009328158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393</originalsourceid><addsrcrecordid>eNp9kDFPwzAUhC0EEqXwDxgsMac8x0mdTAhVFJAqdYHZerEd4cqJi52A-u9xFFiZ3vC-O90dIbcMVgwquIecc1ZV1SoHlq8Eq0tWn5EFg7zOiprBOVlMSDYxl-QqxgMArDkXC7Ld99QZjAPFJno3DoZq82VxsL6nJg62w8GHSFsfqO9Npm1n-pie6Kj6sOFIO6-NuyYXLbpobn7vkrxvn942L9lu__y6edxlivNyyFpeIMcaEQ1LwRpueC1aoRXTQuSNEYUosSqadcMaDQhlmVBUZWu0UonlS3I3-x6D_xxTPnnwY0hhoswBap5XrKwSVcyUCj7GYFp5DKlIOEkGclpM_i0mp8XkvFiSPcwy26e6HX774LQc8OR8aAP2ykbJ_3X4AcPVc0Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009328158</pqid></control><display><type>article</type><title>On least absolute deviation estimators for one-dimensional chirp model</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Lahiri, Ananya ; Kundu, Debasis ; Mitra, Amit</creator><creatorcontrib>Lahiri, Ananya ; Kundu, Debasis ; Mitra, Amit</creatorcontrib><description>It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one-dimensional chirp signal model under independent and identically distributed error structure. The proposed estimators are strongly consistent and it is observed that the asymptotic distribution of the LAD estimators are normally distributed. We perform some simulation studies to verify the asymptotic theory for small sample sizes and the performance are quite satisfactory.</description><identifier>ISSN: 0233-1888</identifier><identifier>EISSN: 1029-4910</identifier><identifier>DOI: 10.1080/02331888.2012.719519</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>asymptotic distribution ; Chirp signals ; Computer simulation ; Deviation ; Economic models ; Estimating techniques ; Estimators ; least absolute deviation estimators ; Parameter estimation ; Regression analysis ; strong consistency</subject><ispartof>Statistics (Berlin, DDR), 2014-03, Vol.48 (2), p.405-420</ispartof><rights>2012 Taylor & Francis 2012</rights><rights>2012 Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393</citedby><cites>FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lahiri, Ananya</creatorcontrib><creatorcontrib>Kundu, Debasis</creatorcontrib><creatorcontrib>Mitra, Amit</creatorcontrib><title>On least absolute deviation estimators for one-dimensional chirp model</title><title>Statistics (Berlin, DDR)</title><description>It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one-dimensional chirp signal model under independent and identically distributed error structure. The proposed estimators are strongly consistent and it is observed that the asymptotic distribution of the LAD estimators are normally distributed. We perform some simulation studies to verify the asymptotic theory for small sample sizes and the performance are quite satisfactory.</description><subject>asymptotic distribution</subject><subject>Chirp signals</subject><subject>Computer simulation</subject><subject>Deviation</subject><subject>Economic models</subject><subject>Estimating techniques</subject><subject>Estimators</subject><subject>least absolute deviation estimators</subject><subject>Parameter estimation</subject><subject>Regression analysis</subject><subject>strong consistency</subject><issn>0233-1888</issn><issn>1029-4910</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAUhC0EEqXwDxgsMac8x0mdTAhVFJAqdYHZerEd4cqJi52A-u9xFFiZ3vC-O90dIbcMVgwquIecc1ZV1SoHlq8Eq0tWn5EFg7zOiprBOVlMSDYxl-QqxgMArDkXC7Ld99QZjAPFJno3DoZq82VxsL6nJg62w8GHSFsfqO9Npm1n-pie6Kj6sOFIO6-NuyYXLbpobn7vkrxvn942L9lu__y6edxlivNyyFpeIMcaEQ1LwRpueC1aoRXTQuSNEYUosSqadcMaDQhlmVBUZWu0UonlS3I3-x6D_xxTPnnwY0hhoswBap5XrKwSVcyUCj7GYFp5DKlIOEkGclpM_i0mp8XkvFiSPcwy26e6HX774LQc8OR8aAP2ykbJ_3X4AcPVc0Y</recordid><startdate>20140304</startdate><enddate>20140304</enddate><creator>Lahiri, Ananya</creator><creator>Kundu, Debasis</creator><creator>Mitra, Amit</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140304</creationdate><title>On least absolute deviation estimators for one-dimensional chirp model</title><author>Lahiri, Ananya ; Kundu, Debasis ; Mitra, Amit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>asymptotic distribution</topic><topic>Chirp signals</topic><topic>Computer simulation</topic><topic>Deviation</topic><topic>Economic models</topic><topic>Estimating techniques</topic><topic>Estimators</topic><topic>least absolute deviation estimators</topic><topic>Parameter estimation</topic><topic>Regression analysis</topic><topic>strong consistency</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lahiri, Ananya</creatorcontrib><creatorcontrib>Kundu, Debasis</creatorcontrib><creatorcontrib>Mitra, Amit</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics (Berlin, DDR)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lahiri, Ananya</au><au>Kundu, Debasis</au><au>Mitra, Amit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On least absolute deviation estimators for one-dimensional chirp model</atitle><jtitle>Statistics (Berlin, DDR)</jtitle><date>2014-03-04</date><risdate>2014</risdate><volume>48</volume><issue>2</issue><spage>405</spage><epage>420</epage><pages>405-420</pages><issn>0233-1888</issn><eissn>1029-4910</eissn><abstract>It is well known that the least absolute deviation (LAD) estimators are more robust than the least squares estimators particularly in presence of heavy tail errors. We consider the LAD estimators of the unknown parameters of one-dimensional chirp signal model under independent and identically distributed error structure. The proposed estimators are strongly consistent and it is observed that the asymptotic distribution of the LAD estimators are normally distributed. We perform some simulation studies to verify the asymptotic theory for small sample sizes and the performance are quite satisfactory.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/02331888.2012.719519</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0233-1888 |
ispartof | Statistics (Berlin, DDR), 2014-03, Vol.48 (2), p.405-420 |
issn | 0233-1888 1029-4910 |
language | eng |
recordid | cdi_crossref_primary_10_1080_02331888_2012_719519 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | asymptotic distribution Chirp signals Computer simulation Deviation Economic models Estimating techniques Estimators least absolute deviation estimators Parameter estimation Regression analysis strong consistency |
title | On least absolute deviation estimators for one-dimensional chirp model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A42%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20least%20absolute%20deviation%20estimators%20for%20one-dimensional%20chirp%20model&rft.jtitle=Statistics%20(Berlin,%20DDR)&rft.au=Lahiri,%20Ananya&rft.date=2014-03-04&rft.volume=48&rft.issue=2&rft.spage=405&rft.epage=420&rft.pages=405-420&rft.issn=0233-1888&rft.eissn=1029-4910&rft_id=info:doi/10.1080/02331888.2012.719519&rft_dat=%3Cproquest_cross%3E2009328158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-f34a3a9aaae1491b3e397f7dc1d772be7475a84b6b1bd0a055aaaac5fedcce393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2009328158&rft_id=info:pmid/&rfr_iscdi=true |