Loading…
Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions
The present study aims to explore the potential of multiscalar meteorological drought indices in detecting soil moisture drought events. The standardized soil moisture index (SSMI), standardized precipitation index (SPI), standardized evapotranspiration index (SEI), standardized precipitation evapot...
Saved in:
Published in: | Hydrological sciences journal 2021-07, Vol.66 (9), p.1475-1487 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03 |
container_end_page | 1487 |
container_issue | 9 |
container_start_page | 1475 |
container_title | Hydrological sciences journal |
container_volume | 66 |
creator | Das, Prabir Kumar Mohinuddin, S. K. Midya, Subrata Kumar Das, Dilip Kumar Sharma, Richa Bandyopadhyay, Soumya |
description | The present study aims to explore the potential of multiscalar meteorological drought indices in detecting soil moisture drought events. The standardized soil moisture index (SSMI), standardized precipitation index (SPI), standardized evapotranspiration index (SEI), standardized precipitation evapotranspiration index (SPEI) and multivariate moisture anomaly index (MMAI) were computed using long-term (1980-2015) MERRA-2 soil moisture, precipitation and/or evapotranspiration data products. The performances of the meteorological indices were evaluated based on a zone-wise and spatial correlation approach along with failure rate (FR) and false alarm rate (FAR) values. The spatial correlation was highest in SEI, followed by MMAI, in comparison to SPI and SPEI. FR and FAR values indicated that SEI is the best index for detecting soil moisture drought events, whereas MMAI outperformed the other indices in representing combined drought events, i.e. meteorological or/and soil moisture droughts. The outcome of the study may be useful in retrieving information about soil moisture drought over a region using only meteorological parameters. |
doi_str_mv | 10.1080/02626667.2021.1942475 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02626667_2021_1942475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560969469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh43Xny0bS50jH8GAy80euQpGnNaJuZtMj-vR3bbr06cM7zvgcehO4JLAiU8AhUUCFEsaBAyYJITnmRX6AZJTlkjLP8Es0OTHaArtFNSlsAxqVgM9SsdI-7sR18srrVEXducCGGNjR-WuAqhrH5HrDvK29dwtV0tgNOwbe4Cz4NY3RnKD3hJZ421R6HGq-nxNQdXeNDn27RVa3b5O5Oc46-Xl8-V-_Z5uNtvVpuMstYOWRGCMq5JboqGK0YJ4UphHRWGmZyKEAboqWlzgAYKYvC8Io5akoKHEphgc3Rw7F3F8PP6NKgtmGM_fRS0VyAFJILOVH5kbIxpBRdrXbRdzruFQF1cKrOTtXBqTo5nXLPx5zv6xA7_RtiW6lB79sQ66h765Ni_1f8AXsUfng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560969469</pqid></control><display><type>article</type><title>Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Das, Prabir Kumar ; Mohinuddin, S. K. ; Midya, Subrata Kumar ; Das, Dilip Kumar ; Sharma, Richa ; Bandyopadhyay, Soumya</creator><creatorcontrib>Das, Prabir Kumar ; Mohinuddin, S. K. ; Midya, Subrata Kumar ; Das, Dilip Kumar ; Sharma, Richa ; Bandyopadhyay, Soumya</creatorcontrib><description>The present study aims to explore the potential of multiscalar meteorological drought indices in detecting soil moisture drought events. The standardized soil moisture index (SSMI), standardized precipitation index (SPI), standardized evapotranspiration index (SEI), standardized precipitation evapotranspiration index (SPEI) and multivariate moisture anomaly index (MMAI) were computed using long-term (1980-2015) MERRA-2 soil moisture, precipitation and/or evapotranspiration data products. The performances of the meteorological indices were evaluated based on a zone-wise and spatial correlation approach along with failure rate (FR) and false alarm rate (FAR) values. The spatial correlation was highest in SEI, followed by MMAI, in comparison to SPI and SPEI. FR and FAR values indicated that SEI is the best index for detecting soil moisture drought events, whereas MMAI outperformed the other indices in representing combined drought events, i.e. meteorological or/and soil moisture droughts. The outcome of the study may be useful in retrieving information about soil moisture drought over a region using only meteorological parameters.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2021.1942475</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>combined drought ; Correlation ; Drought ; Drought index ; Evapotranspiration ; Evapotranspiration-precipitation relationships ; Failure rates ; False alarms ; Information retrieval ; MERRA-2 ; meteorological drought ; Meteorological parameters ; Moisture index ; multivariate moisture anomaly index ; Precipitation ; Soil ; Soil moisture ; soil moisture drought ; Standardized precipitation index ; standardized soil moisture index</subject><ispartof>Hydrological sciences journal, 2021-07, Vol.66 (9), p.1475-1487</ispartof><rights>2021 IAHS 2021</rights><rights>2021 IAHS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03</citedby><cites>FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Prabir Kumar</creatorcontrib><creatorcontrib>Mohinuddin, S. K.</creatorcontrib><creatorcontrib>Midya, Subrata Kumar</creatorcontrib><creatorcontrib>Das, Dilip Kumar</creatorcontrib><creatorcontrib>Sharma, Richa</creatorcontrib><creatorcontrib>Bandyopadhyay, Soumya</creatorcontrib><title>Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions</title><title>Hydrological sciences journal</title><description>The present study aims to explore the potential of multiscalar meteorological drought indices in detecting soil moisture drought events. The standardized soil moisture index (SSMI), standardized precipitation index (SPI), standardized evapotranspiration index (SEI), standardized precipitation evapotranspiration index (SPEI) and multivariate moisture anomaly index (MMAI) were computed using long-term (1980-2015) MERRA-2 soil moisture, precipitation and/or evapotranspiration data products. The performances of the meteorological indices were evaluated based on a zone-wise and spatial correlation approach along with failure rate (FR) and false alarm rate (FAR) values. The spatial correlation was highest in SEI, followed by MMAI, in comparison to SPI and SPEI. FR and FAR values indicated that SEI is the best index for detecting soil moisture drought events, whereas MMAI outperformed the other indices in representing combined drought events, i.e. meteorological or/and soil moisture droughts. The outcome of the study may be useful in retrieving information about soil moisture drought over a region using only meteorological parameters.</description><subject>combined drought</subject><subject>Correlation</subject><subject>Drought</subject><subject>Drought index</subject><subject>Evapotranspiration</subject><subject>Evapotranspiration-precipitation relationships</subject><subject>Failure rates</subject><subject>False alarms</subject><subject>Information retrieval</subject><subject>MERRA-2</subject><subject>meteorological drought</subject><subject>Meteorological parameters</subject><subject>Moisture index</subject><subject>multivariate moisture anomaly index</subject><subject>Precipitation</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>soil moisture drought</subject><subject>Standardized precipitation index</subject><subject>standardized soil moisture index</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QQh43Xny0bS50jH8GAy80euQpGnNaJuZtMj-vR3bbr06cM7zvgcehO4JLAiU8AhUUCFEsaBAyYJITnmRX6AZJTlkjLP8Es0OTHaArtFNSlsAxqVgM9SsdI-7sR18srrVEXducCGGNjR-WuAqhrH5HrDvK29dwtV0tgNOwbe4Cz4NY3RnKD3hJZ421R6HGq-nxNQdXeNDn27RVa3b5O5Oc46-Xl8-V-_Z5uNtvVpuMstYOWRGCMq5JboqGK0YJ4UphHRWGmZyKEAboqWlzgAYKYvC8Io5akoKHEphgc3Rw7F3F8PP6NKgtmGM_fRS0VyAFJILOVH5kbIxpBRdrXbRdzruFQF1cKrOTtXBqTo5nXLPx5zv6xA7_RtiW6lB79sQ66h765Ni_1f8AXsUfng</recordid><startdate>20210704</startdate><enddate>20210704</enddate><creator>Das, Prabir Kumar</creator><creator>Mohinuddin, S. K.</creator><creator>Midya, Subrata Kumar</creator><creator>Das, Dilip Kumar</creator><creator>Sharma, Richa</creator><creator>Bandyopadhyay, Soumya</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20210704</creationdate><title>Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions</title><author>Das, Prabir Kumar ; Mohinuddin, S. K. ; Midya, Subrata Kumar ; Das, Dilip Kumar ; Sharma, Richa ; Bandyopadhyay, Soumya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>combined drought</topic><topic>Correlation</topic><topic>Drought</topic><topic>Drought index</topic><topic>Evapotranspiration</topic><topic>Evapotranspiration-precipitation relationships</topic><topic>Failure rates</topic><topic>False alarms</topic><topic>Information retrieval</topic><topic>MERRA-2</topic><topic>meteorological drought</topic><topic>Meteorological parameters</topic><topic>Moisture index</topic><topic>multivariate moisture anomaly index</topic><topic>Precipitation</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>soil moisture drought</topic><topic>Standardized precipitation index</topic><topic>standardized soil moisture index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Prabir Kumar</creatorcontrib><creatorcontrib>Mohinuddin, S. K.</creatorcontrib><creatorcontrib>Midya, Subrata Kumar</creatorcontrib><creatorcontrib>Das, Dilip Kumar</creatorcontrib><creatorcontrib>Sharma, Richa</creatorcontrib><creatorcontrib>Bandyopadhyay, Soumya</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Prabir Kumar</au><au>Mohinuddin, S. K.</au><au>Midya, Subrata Kumar</au><au>Das, Dilip Kumar</au><au>Sharma, Richa</au><au>Bandyopadhyay, Soumya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions</atitle><jtitle>Hydrological sciences journal</jtitle><date>2021-07-04</date><risdate>2021</risdate><volume>66</volume><issue>9</issue><spage>1475</spage><epage>1487</epage><pages>1475-1487</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>The present study aims to explore the potential of multiscalar meteorological drought indices in detecting soil moisture drought events. The standardized soil moisture index (SSMI), standardized precipitation index (SPI), standardized evapotranspiration index (SEI), standardized precipitation evapotranspiration index (SPEI) and multivariate moisture anomaly index (MMAI) were computed using long-term (1980-2015) MERRA-2 soil moisture, precipitation and/or evapotranspiration data products. The performances of the meteorological indices were evaluated based on a zone-wise and spatial correlation approach along with failure rate (FR) and false alarm rate (FAR) values. The spatial correlation was highest in SEI, followed by MMAI, in comparison to SPI and SPEI. FR and FAR values indicated that SEI is the best index for detecting soil moisture drought events, whereas MMAI outperformed the other indices in representing combined drought events, i.e. meteorological or/and soil moisture droughts. The outcome of the study may be useful in retrieving information about soil moisture drought over a region using only meteorological parameters.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/02626667.2021.1942475</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0262-6667 |
ispartof | Hydrological sciences journal, 2021-07, Vol.66 (9), p.1475-1487 |
issn | 0262-6667 2150-3435 |
language | eng |
recordid | cdi_crossref_primary_10_1080_02626667_2021_1942475 |
source | Taylor and Francis Science and Technology Collection |
subjects | combined drought Correlation Drought Drought index Evapotranspiration Evapotranspiration-precipitation relationships Failure rates False alarms Information retrieval MERRA-2 meteorological drought Meteorological parameters Moisture index multivariate moisture anomaly index Precipitation Soil Soil moisture soil moisture drought Standardized precipitation index standardized soil moisture index |
title | Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20multiscalar%20meteorological%20drought%20indices%20detect%20soil%20moisture%20droughts?%20A%20study%20of%20Indian%20regions&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Das,%20Prabir%20Kumar&rft.date=2021-07-04&rft.volume=66&rft.issue=9&rft.spage=1475&rft.epage=1487&rft.pages=1475-1487&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2021.1942475&rft_dat=%3Cproquest_cross%3E2560969469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560969469&rft_id=info:pmid/&rfr_iscdi=true |