Loading…

Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions

The present study aims to explore the potential of multiscalar meteorological drought indices in detecting soil moisture drought events. The standardized soil moisture index (SSMI), standardized precipitation index (SPI), standardized evapotranspiration index (SEI), standardized precipitation evapot...

Full description

Saved in:
Bibliographic Details
Published in:Hydrological sciences journal 2021-07, Vol.66 (9), p.1475-1487
Main Authors: Das, Prabir Kumar, Mohinuddin, S. K., Midya, Subrata Kumar, Das, Dilip Kumar, Sharma, Richa, Bandyopadhyay, Soumya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03
cites cdi_FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03
container_end_page 1487
container_issue 9
container_start_page 1475
container_title Hydrological sciences journal
container_volume 66
creator Das, Prabir Kumar
Mohinuddin, S. K.
Midya, Subrata Kumar
Das, Dilip Kumar
Sharma, Richa
Bandyopadhyay, Soumya
description The present study aims to explore the potential of multiscalar meteorological drought indices in detecting soil moisture drought events. The standardized soil moisture index (SSMI), standardized precipitation index (SPI), standardized evapotranspiration index (SEI), standardized precipitation evapotranspiration index (SPEI) and multivariate moisture anomaly index (MMAI) were computed using long-term (1980-2015) MERRA-2 soil moisture, precipitation and/or evapotranspiration data products. The performances of the meteorological indices were evaluated based on a zone-wise and spatial correlation approach along with failure rate (FR) and false alarm rate (FAR) values. The spatial correlation was highest in SEI, followed by MMAI, in comparison to SPI and SPEI. FR and FAR values indicated that SEI is the best index for detecting soil moisture drought events, whereas MMAI outperformed the other indices in representing combined drought events, i.e. meteorological or/and soil moisture droughts. The outcome of the study may be useful in retrieving information about soil moisture drought over a region using only meteorological parameters.
doi_str_mv 10.1080/02626667.2021.1942475
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02626667_2021_1942475</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560969469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKc_QQh43Xny0bS50jH8GAy80euQpGnNaJuZtMj-vR3bbr06cM7zvgcehO4JLAiU8AhUUCFEsaBAyYJITnmRX6AZJTlkjLP8Es0OTHaArtFNSlsAxqVgM9SsdI-7sR18srrVEXducCGGNjR-WuAqhrH5HrDvK29dwtV0tgNOwbe4Cz4NY3RnKD3hJZ421R6HGq-nxNQdXeNDn27RVa3b5O5Oc46-Xl8-V-_Z5uNtvVpuMstYOWRGCMq5JboqGK0YJ4UphHRWGmZyKEAboqWlzgAYKYvC8Io5akoKHEphgc3Rw7F3F8PP6NKgtmGM_fRS0VyAFJILOVH5kbIxpBRdrXbRdzruFQF1cKrOTtXBqTo5nXLPx5zv6xA7_RtiW6lB79sQ66h765Ni_1f8AXsUfng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560969469</pqid></control><display><type>article</type><title>Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Das, Prabir Kumar ; Mohinuddin, S. K. ; Midya, Subrata Kumar ; Das, Dilip Kumar ; Sharma, Richa ; Bandyopadhyay, Soumya</creator><creatorcontrib>Das, Prabir Kumar ; Mohinuddin, S. K. ; Midya, Subrata Kumar ; Das, Dilip Kumar ; Sharma, Richa ; Bandyopadhyay, Soumya</creatorcontrib><description>The present study aims to explore the potential of multiscalar meteorological drought indices in detecting soil moisture drought events. The standardized soil moisture index (SSMI), standardized precipitation index (SPI), standardized evapotranspiration index (SEI), standardized precipitation evapotranspiration index (SPEI) and multivariate moisture anomaly index (MMAI) were computed using long-term (1980-2015) MERRA-2 soil moisture, precipitation and/or evapotranspiration data products. The performances of the meteorological indices were evaluated based on a zone-wise and spatial correlation approach along with failure rate (FR) and false alarm rate (FAR) values. The spatial correlation was highest in SEI, followed by MMAI, in comparison to SPI and SPEI. FR and FAR values indicated that SEI is the best index for detecting soil moisture drought events, whereas MMAI outperformed the other indices in representing combined drought events, i.e. meteorological or/and soil moisture droughts. The outcome of the study may be useful in retrieving information about soil moisture drought over a region using only meteorological parameters.</description><identifier>ISSN: 0262-6667</identifier><identifier>EISSN: 2150-3435</identifier><identifier>DOI: 10.1080/02626667.2021.1942475</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>combined drought ; Correlation ; Drought ; Drought index ; Evapotranspiration ; Evapotranspiration-precipitation relationships ; Failure rates ; False alarms ; Information retrieval ; MERRA-2 ; meteorological drought ; Meteorological parameters ; Moisture index ; multivariate moisture anomaly index ; Precipitation ; Soil ; Soil moisture ; soil moisture drought ; Standardized precipitation index ; standardized soil moisture index</subject><ispartof>Hydrological sciences journal, 2021-07, Vol.66 (9), p.1475-1487</ispartof><rights>2021 IAHS 2021</rights><rights>2021 IAHS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03</citedby><cites>FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Das, Prabir Kumar</creatorcontrib><creatorcontrib>Mohinuddin, S. K.</creatorcontrib><creatorcontrib>Midya, Subrata Kumar</creatorcontrib><creatorcontrib>Das, Dilip Kumar</creatorcontrib><creatorcontrib>Sharma, Richa</creatorcontrib><creatorcontrib>Bandyopadhyay, Soumya</creatorcontrib><title>Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions</title><title>Hydrological sciences journal</title><description>The present study aims to explore the potential of multiscalar meteorological drought indices in detecting soil moisture drought events. The standardized soil moisture index (SSMI), standardized precipitation index (SPI), standardized evapotranspiration index (SEI), standardized precipitation evapotranspiration index (SPEI) and multivariate moisture anomaly index (MMAI) were computed using long-term (1980-2015) MERRA-2 soil moisture, precipitation and/or evapotranspiration data products. The performances of the meteorological indices were evaluated based on a zone-wise and spatial correlation approach along with failure rate (FR) and false alarm rate (FAR) values. The spatial correlation was highest in SEI, followed by MMAI, in comparison to SPI and SPEI. FR and FAR values indicated that SEI is the best index for detecting soil moisture drought events, whereas MMAI outperformed the other indices in representing combined drought events, i.e. meteorological or/and soil moisture droughts. The outcome of the study may be useful in retrieving information about soil moisture drought over a region using only meteorological parameters.</description><subject>combined drought</subject><subject>Correlation</subject><subject>Drought</subject><subject>Drought index</subject><subject>Evapotranspiration</subject><subject>Evapotranspiration-precipitation relationships</subject><subject>Failure rates</subject><subject>False alarms</subject><subject>Information retrieval</subject><subject>MERRA-2</subject><subject>meteorological drought</subject><subject>Meteorological parameters</subject><subject>Moisture index</subject><subject>multivariate moisture anomaly index</subject><subject>Precipitation</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>soil moisture drought</subject><subject>Standardized precipitation index</subject><subject>standardized soil moisture index</subject><issn>0262-6667</issn><issn>2150-3435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMoOKc_QQh43Xny0bS50jH8GAy80euQpGnNaJuZtMj-vR3bbr06cM7zvgcehO4JLAiU8AhUUCFEsaBAyYJITnmRX6AZJTlkjLP8Es0OTHaArtFNSlsAxqVgM9SsdI-7sR18srrVEXducCGGNjR-WuAqhrH5HrDvK29dwtV0tgNOwbe4Cz4NY3RnKD3hJZ421R6HGq-nxNQdXeNDn27RVa3b5O5Oc46-Xl8-V-_Z5uNtvVpuMstYOWRGCMq5JboqGK0YJ4UphHRWGmZyKEAboqWlzgAYKYvC8Io5akoKHEphgc3Rw7F3F8PP6NKgtmGM_fRS0VyAFJILOVH5kbIxpBRdrXbRdzruFQF1cKrOTtXBqTo5nXLPx5zv6xA7_RtiW6lB79sQ66h765Ni_1f8AXsUfng</recordid><startdate>20210704</startdate><enddate>20210704</enddate><creator>Das, Prabir Kumar</creator><creator>Mohinuddin, S. K.</creator><creator>Midya, Subrata Kumar</creator><creator>Das, Dilip Kumar</creator><creator>Sharma, Richa</creator><creator>Bandyopadhyay, Soumya</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20210704</creationdate><title>Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions</title><author>Das, Prabir Kumar ; Mohinuddin, S. K. ; Midya, Subrata Kumar ; Das, Dilip Kumar ; Sharma, Richa ; Bandyopadhyay, Soumya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>combined drought</topic><topic>Correlation</topic><topic>Drought</topic><topic>Drought index</topic><topic>Evapotranspiration</topic><topic>Evapotranspiration-precipitation relationships</topic><topic>Failure rates</topic><topic>False alarms</topic><topic>Information retrieval</topic><topic>MERRA-2</topic><topic>meteorological drought</topic><topic>Meteorological parameters</topic><topic>Moisture index</topic><topic>multivariate moisture anomaly index</topic><topic>Precipitation</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>soil moisture drought</topic><topic>Standardized precipitation index</topic><topic>standardized soil moisture index</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Prabir Kumar</creatorcontrib><creatorcontrib>Mohinuddin, S. K.</creatorcontrib><creatorcontrib>Midya, Subrata Kumar</creatorcontrib><creatorcontrib>Das, Dilip Kumar</creatorcontrib><creatorcontrib>Sharma, Richa</creatorcontrib><creatorcontrib>Bandyopadhyay, Soumya</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological sciences journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Prabir Kumar</au><au>Mohinuddin, S. K.</au><au>Midya, Subrata Kumar</au><au>Das, Dilip Kumar</au><au>Sharma, Richa</au><au>Bandyopadhyay, Soumya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions</atitle><jtitle>Hydrological sciences journal</jtitle><date>2021-07-04</date><risdate>2021</risdate><volume>66</volume><issue>9</issue><spage>1475</spage><epage>1487</epage><pages>1475-1487</pages><issn>0262-6667</issn><eissn>2150-3435</eissn><abstract>The present study aims to explore the potential of multiscalar meteorological drought indices in detecting soil moisture drought events. The standardized soil moisture index (SSMI), standardized precipitation index (SPI), standardized evapotranspiration index (SEI), standardized precipitation evapotranspiration index (SPEI) and multivariate moisture anomaly index (MMAI) were computed using long-term (1980-2015) MERRA-2 soil moisture, precipitation and/or evapotranspiration data products. The performances of the meteorological indices were evaluated based on a zone-wise and spatial correlation approach along with failure rate (FR) and false alarm rate (FAR) values. The spatial correlation was highest in SEI, followed by MMAI, in comparison to SPI and SPEI. FR and FAR values indicated that SEI is the best index for detecting soil moisture drought events, whereas MMAI outperformed the other indices in representing combined drought events, i.e. meteorological or/and soil moisture droughts. The outcome of the study may be useful in retrieving information about soil moisture drought over a region using only meteorological parameters.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02626667.2021.1942475</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0262-6667
ispartof Hydrological sciences journal, 2021-07, Vol.66 (9), p.1475-1487
issn 0262-6667
2150-3435
language eng
recordid cdi_crossref_primary_10_1080_02626667_2021_1942475
source Taylor and Francis Science and Technology Collection
subjects combined drought
Correlation
Drought
Drought index
Evapotranspiration
Evapotranspiration-precipitation relationships
Failure rates
False alarms
Information retrieval
MERRA-2
meteorological drought
Meteorological parameters
Moisture index
multivariate moisture anomaly index
Precipitation
Soil
Soil moisture
soil moisture drought
Standardized precipitation index
standardized soil moisture index
title Can multiscalar meteorological drought indices detect soil moisture droughts? A study of Indian regions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T04%3A42%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20multiscalar%20meteorological%20drought%20indices%20detect%20soil%20moisture%20droughts?%20A%20study%20of%20Indian%20regions&rft.jtitle=Hydrological%20sciences%20journal&rft.au=Das,%20Prabir%20Kumar&rft.date=2021-07-04&rft.volume=66&rft.issue=9&rft.spage=1475&rft.epage=1487&rft.pages=1475-1487&rft.issn=0262-6667&rft.eissn=2150-3435&rft_id=info:doi/10.1080/02626667.2021.1942475&rft_dat=%3Cproquest_cross%3E2560969469%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-b66244c1ad732d3417b769ec9b3b5070ab1a9c2eb00b9977b4d3e2b8204086c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560969469&rft_id=info:pmid/&rfr_iscdi=true