Loading…
A GREY LINEAR PROGRAMMING APPROACH FOR MUNICIPAL SOLID WASTE MANAGEMENT PLANNING UNDER UNCERTAINTY
In optimization analysis by linear programming, uncertainties may exist in model coefficients and stipulations (right-hand side constraints). These uncertainties can propagate through the analysis and generate uncertainties in the results. However, among the previous methods dealing with uncertainty...
Saved in:
Published in: | Civil engineering systems 1992-11, Vol.9 (4), p.319-335 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In optimization analysis by linear programming, uncertainties may exist in model coefficients and stipulations (right-hand side constraints). These uncertainties can propagate through the analysis and generate uncertainties in the results. However, among the previous methods dealing with uncertainty, some were too complicated to be applied to actual problems, and some were unable to reflect completely the uncertainties of the input and output information. In this paper, a grey linear programming (GLP) model is introduced to the civil engineering area. This method allows uncertainties in the model inputs to be communicated into the optimization process, and thereby solutions reflecting the inherent uncertainties can be derived. A grey linear programming problem can be solved easily by running a simplex program several times. The modelling approach is applied to a hypothetical problem of waste flow allocation planning within a municipal solid waste management system. The results indicate that reasonable solutions can be generated for both the lower and upper limit objective function cases. |
---|---|
ISSN: | 0263-0257 |
DOI: | 10.1080/02630259208970657 |