Loading…

Analysis of ranked data in randomized blocks when there are missing values

Data consisting of ranks within blocks are considered for randomized block designs when there are missing values. Tied ranks are possible. Such data can be analysed using the Skillings-Mack test. Here we suggest a new approach based on carrying out an ANOVA on the ranks using the general linear mode...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied statistics 2017-01, Vol.44 (1), p.16-23
Main Authors: Best, D. J., Rayner, J. C. W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683
cites cdi_FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683
container_end_page 23
container_issue 1
container_start_page 16
container_title Journal of applied statistics
container_volume 44
creator Best, D. J.
Rayner, J. C. W.
description Data consisting of ranks within blocks are considered for randomized block designs when there are missing values. Tied ranks are possible. Such data can be analysed using the Skillings-Mack test. Here we suggest a new approach based on carrying out an ANOVA on the ranks using the general linear model platform available in many statistical packages. Such a platform allows an ANOVA to be calculated when there are missing values. Indicative sizes and powers show the ANOVA approach performs better than the Skillings-Mack test.
doi_str_mv 10.1080/02664763.2016.1158245
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02664763_2016_1158245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904245302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwE5AisbCknO3YSTaqik9VYoHZutgOTZvGxU6pyq_HUWFhYDifbL278z1CLilMKBRwA0zKLJd8woDKCaWiYJk4IiPKJaQgODsmo4FJB-iUnIWwBICCCj4iz9MO231oQuLqxGO3siYx2GPSdMPVuHXzFZ-q1ulVSHYL2yX9wnqbYIx1E0LTvSef2G5tOCcnNbbBXvzkMXm7v3udPabzl4en2XSeap7TPp5MCmE5GhBS8FJrjbnggKwSVVYhtXkpTAWsNDIulEvGwGoBHNEYLQs-JteHvhvvPuLcXsV_aNu22Fm3DYqWkEUBHFhEr_6gS7f1ceNIFZJSKkUBkRIHSnsXgre12vhmjX6vKKjBsPo1rAbD6sdwrLs91DVd7fwad863RvW4b52vozzdBMX_b_ENZQOA1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861116580</pqid></control><display><type>article</type><title>Analysis of ranked data in randomized blocks when there are missing values</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis Science and Technology Collection</source><creator>Best, D. J. ; Rayner, J. C. W.</creator><creatorcontrib>Best, D. J. ; Rayner, J. C. W.</creatorcontrib><description>Data consisting of ranks within blocks are considered for randomized block designs when there are missing values. Tied ranks are possible. Such data can be analysed using the Skillings-Mack test. Here we suggest a new approach based on carrying out an ANOVA on the ranks using the general linear model platform available in many statistical packages. Such a platform allows an ANOVA to be calculated when there are missing values. Indicative sizes and powers show the ANOVA approach performs better than the Skillings-Mack test.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2016.1158245</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>62Fxx ; 62Gxx ; Analysis of variance ; Applied statistics ; Design analysis ; Economic models ; F tests ; Mathematical models ; Packages ; Platforms ; powers ; randomized block designs ; ranks data ; test sizes ; Variance analysis</subject><ispartof>Journal of applied statistics, 2017-01, Vol.44 (1), p.16-23</ispartof><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683</citedby><cites>FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Best, D. J.</creatorcontrib><creatorcontrib>Rayner, J. C. W.</creatorcontrib><title>Analysis of ranked data in randomized blocks when there are missing values</title><title>Journal of applied statistics</title><description>Data consisting of ranks within blocks are considered for randomized block designs when there are missing values. Tied ranks are possible. Such data can be analysed using the Skillings-Mack test. Here we suggest a new approach based on carrying out an ANOVA on the ranks using the general linear model platform available in many statistical packages. Such a platform allows an ANOVA to be calculated when there are missing values. Indicative sizes and powers show the ANOVA approach performs better than the Skillings-Mack test.</description><subject>62Fxx</subject><subject>62Gxx</subject><subject>Analysis of variance</subject><subject>Applied statistics</subject><subject>Design analysis</subject><subject>Economic models</subject><subject>F tests</subject><subject>Mathematical models</subject><subject>Packages</subject><subject>Platforms</subject><subject>powers</subject><subject>randomized block designs</subject><subject>ranks data</subject><subject>test sizes</subject><subject>Variance analysis</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwE5AisbCknO3YSTaqik9VYoHZutgOTZvGxU6pyq_HUWFhYDifbL278z1CLilMKBRwA0zKLJd8woDKCaWiYJk4IiPKJaQgODsmo4FJB-iUnIWwBICCCj4iz9MO231oQuLqxGO3siYx2GPSdMPVuHXzFZ-q1ulVSHYL2yX9wnqbYIx1E0LTvSef2G5tOCcnNbbBXvzkMXm7v3udPabzl4en2XSeap7TPp5MCmE5GhBS8FJrjbnggKwSVVYhtXkpTAWsNDIulEvGwGoBHNEYLQs-JteHvhvvPuLcXsV_aNu22Fm3DYqWkEUBHFhEr_6gS7f1ceNIFZJSKkUBkRIHSnsXgre12vhmjX6vKKjBsPo1rAbD6sdwrLs91DVd7fwad863RvW4b52vozzdBMX_b_ENZQOA1g</recordid><startdate>20170102</startdate><enddate>20170102</enddate><creator>Best, D. J.</creator><creator>Rayner, J. C. W.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170102</creationdate><title>Analysis of ranked data in randomized blocks when there are missing values</title><author>Best, D. J. ; Rayner, J. C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>62Fxx</topic><topic>62Gxx</topic><topic>Analysis of variance</topic><topic>Applied statistics</topic><topic>Design analysis</topic><topic>Economic models</topic><topic>F tests</topic><topic>Mathematical models</topic><topic>Packages</topic><topic>Platforms</topic><topic>powers</topic><topic>randomized block designs</topic><topic>ranks data</topic><topic>test sizes</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Best, D. J.</creatorcontrib><creatorcontrib>Rayner, J. C. W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Best, D. J.</au><au>Rayner, J. C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of ranked data in randomized blocks when there are missing values</atitle><jtitle>Journal of applied statistics</jtitle><date>2017-01-02</date><risdate>2017</risdate><volume>44</volume><issue>1</issue><spage>16</spage><epage>23</epage><pages>16-23</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>Data consisting of ranks within blocks are considered for randomized block designs when there are missing values. Tied ranks are possible. Such data can be analysed using the Skillings-Mack test. Here we suggest a new approach based on carrying out an ANOVA on the ranks using the general linear model platform available in many statistical packages. Such a platform allows an ANOVA to be calculated when there are missing values. Indicative sizes and powers show the ANOVA approach performs better than the Skillings-Mack test.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02664763.2016.1158245</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4763
ispartof Journal of applied statistics, 2017-01, Vol.44 (1), p.16-23
issn 0266-4763
1360-0532
language eng
recordid cdi_crossref_primary_10_1080_02664763_2016_1158245
source EBSCOhost Business Source Ultimate; Taylor and Francis Science and Technology Collection
subjects 62Fxx
62Gxx
Analysis of variance
Applied statistics
Design analysis
Economic models
F tests
Mathematical models
Packages
Platforms
powers
randomized block designs
ranks data
test sizes
Variance analysis
title Analysis of ranked data in randomized blocks when there are missing values
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20ranked%20data%20in%20randomized%20blocks%20when%20there%20are%20missing%20values&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Best,%20D.%20J.&rft.date=2017-01-02&rft.volume=44&rft.issue=1&rft.spage=16&rft.epage=23&rft.pages=16-23&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2016.1158245&rft_dat=%3Cproquest_cross%3E1904245302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1861116580&rft_id=info:pmid/&rfr_iscdi=true