Loading…
Analysis of ranked data in randomized blocks when there are missing values
Data consisting of ranks within blocks are considered for randomized block designs when there are missing values. Tied ranks are possible. Such data can be analysed using the Skillings-Mack test. Here we suggest a new approach based on carrying out an ANOVA on the ranks using the general linear mode...
Saved in:
Published in: | Journal of applied statistics 2017-01, Vol.44 (1), p.16-23 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683 |
container_end_page | 23 |
container_issue | 1 |
container_start_page | 16 |
container_title | Journal of applied statistics |
container_volume | 44 |
creator | Best, D. J. Rayner, J. C. W. |
description | Data consisting of ranks within blocks are considered for randomized block designs when there are missing values. Tied ranks are possible. Such data can be analysed using the Skillings-Mack test. Here we suggest a new approach based on carrying out an ANOVA on the ranks using the general linear model platform available in many statistical packages. Such a platform allows an ANOVA to be calculated when there are missing values. Indicative sizes and powers show the ANOVA approach performs better than the Skillings-Mack test. |
doi_str_mv | 10.1080/02664763.2016.1158245 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02664763_2016_1158245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904245302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683</originalsourceid><addsrcrecordid>eNp9kD1PwzAQQC0EEqXwE5AisbCknO3YSTaqik9VYoHZutgOTZvGxU6pyq_HUWFhYDifbL278z1CLilMKBRwA0zKLJd8woDKCaWiYJk4IiPKJaQgODsmo4FJB-iUnIWwBICCCj4iz9MO231oQuLqxGO3siYx2GPSdMPVuHXzFZ-q1ulVSHYL2yX9wnqbYIx1E0LTvSef2G5tOCcnNbbBXvzkMXm7v3udPabzl4en2XSeap7TPp5MCmE5GhBS8FJrjbnggKwSVVYhtXkpTAWsNDIulEvGwGoBHNEYLQs-JteHvhvvPuLcXsV_aNu22Fm3DYqWkEUBHFhEr_6gS7f1ceNIFZJSKkUBkRIHSnsXgre12vhmjX6vKKjBsPo1rAbD6sdwrLs91DVd7fwad863RvW4b52vozzdBMX_b_ENZQOA1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861116580</pqid></control><display><type>article</type><title>Analysis of ranked data in randomized blocks when there are missing values</title><source>EBSCOhost Business Source Ultimate</source><source>Taylor and Francis Science and Technology Collection</source><creator>Best, D. J. ; Rayner, J. C. W.</creator><creatorcontrib>Best, D. J. ; Rayner, J. C. W.</creatorcontrib><description>Data consisting of ranks within blocks are considered for randomized block designs when there are missing values. Tied ranks are possible. Such data can be analysed using the Skillings-Mack test. Here we suggest a new approach based on carrying out an ANOVA on the ranks using the general linear model platform available in many statistical packages. Such a platform allows an ANOVA to be calculated when there are missing values. Indicative sizes and powers show the ANOVA approach performs better than the Skillings-Mack test.</description><identifier>ISSN: 0266-4763</identifier><identifier>EISSN: 1360-0532</identifier><identifier>DOI: 10.1080/02664763.2016.1158245</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>62Fxx ; 62Gxx ; Analysis of variance ; Applied statistics ; Design analysis ; Economic models ; F tests ; Mathematical models ; Packages ; Platforms ; powers ; randomized block designs ; ranks data ; test sizes ; Variance analysis</subject><ispartof>Journal of applied statistics, 2017-01, Vol.44 (1), p.16-23</ispartof><rights>2016 Informa UK Limited, trading as Taylor & Francis Group 2016</rights><rights>2016 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683</citedby><cites>FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Best, D. J.</creatorcontrib><creatorcontrib>Rayner, J. C. W.</creatorcontrib><title>Analysis of ranked data in randomized blocks when there are missing values</title><title>Journal of applied statistics</title><description>Data consisting of ranks within blocks are considered for randomized block designs when there are missing values. Tied ranks are possible. Such data can be analysed using the Skillings-Mack test. Here we suggest a new approach based on carrying out an ANOVA on the ranks using the general linear model platform available in many statistical packages. Such a platform allows an ANOVA to be calculated when there are missing values. Indicative sizes and powers show the ANOVA approach performs better than the Skillings-Mack test.</description><subject>62Fxx</subject><subject>62Gxx</subject><subject>Analysis of variance</subject><subject>Applied statistics</subject><subject>Design analysis</subject><subject>Economic models</subject><subject>F tests</subject><subject>Mathematical models</subject><subject>Packages</subject><subject>Platforms</subject><subject>powers</subject><subject>randomized block designs</subject><subject>ranks data</subject><subject>test sizes</subject><subject>Variance analysis</subject><issn>0266-4763</issn><issn>1360-0532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQQC0EEqXwE5AisbCknO3YSTaqik9VYoHZutgOTZvGxU6pyq_HUWFhYDifbL278z1CLilMKBRwA0zKLJd8woDKCaWiYJk4IiPKJaQgODsmo4FJB-iUnIWwBICCCj4iz9MO231oQuLqxGO3siYx2GPSdMPVuHXzFZ-q1ulVSHYL2yX9wnqbYIx1E0LTvSef2G5tOCcnNbbBXvzkMXm7v3udPabzl4en2XSeap7TPp5MCmE5GhBS8FJrjbnggKwSVVYhtXkpTAWsNDIulEvGwGoBHNEYLQs-JteHvhvvPuLcXsV_aNu22Fm3DYqWkEUBHFhEr_6gS7f1ceNIFZJSKkUBkRIHSnsXgre12vhmjX6vKKjBsPo1rAbD6sdwrLs91DVd7fwad863RvW4b52vozzdBMX_b_ENZQOA1g</recordid><startdate>20170102</startdate><enddate>20170102</enddate><creator>Best, D. J.</creator><creator>Rayner, J. C. W.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170102</creationdate><title>Analysis of ranked data in randomized blocks when there are missing values</title><author>Best, D. J. ; Rayner, J. C. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>62Fxx</topic><topic>62Gxx</topic><topic>Analysis of variance</topic><topic>Applied statistics</topic><topic>Design analysis</topic><topic>Economic models</topic><topic>F tests</topic><topic>Mathematical models</topic><topic>Packages</topic><topic>Platforms</topic><topic>powers</topic><topic>randomized block designs</topic><topic>ranks data</topic><topic>test sizes</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Best, D. J.</creatorcontrib><creatorcontrib>Rayner, J. C. W.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of applied statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Best, D. J.</au><au>Rayner, J. C. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of ranked data in randomized blocks when there are missing values</atitle><jtitle>Journal of applied statistics</jtitle><date>2017-01-02</date><risdate>2017</risdate><volume>44</volume><issue>1</issue><spage>16</spage><epage>23</epage><pages>16-23</pages><issn>0266-4763</issn><eissn>1360-0532</eissn><abstract>Data consisting of ranks within blocks are considered for randomized block designs when there are missing values. Tied ranks are possible. Such data can be analysed using the Skillings-Mack test. Here we suggest a new approach based on carrying out an ANOVA on the ranks using the general linear model platform available in many statistical packages. Such a platform allows an ANOVA to be calculated when there are missing values. Indicative sizes and powers show the ANOVA approach performs better than the Skillings-Mack test.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/02664763.2016.1158245</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4763 |
ispartof | Journal of applied statistics, 2017-01, Vol.44 (1), p.16-23 |
issn | 0266-4763 1360-0532 |
language | eng |
recordid | cdi_crossref_primary_10_1080_02664763_2016_1158245 |
source | EBSCOhost Business Source Ultimate; Taylor and Francis Science and Technology Collection |
subjects | 62Fxx 62Gxx Analysis of variance Applied statistics Design analysis Economic models F tests Mathematical models Packages Platforms powers randomized block designs ranks data test sizes Variance analysis |
title | Analysis of ranked data in randomized blocks when there are missing values |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T23%3A02%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20ranked%20data%20in%20randomized%20blocks%20when%20there%20are%20missing%20values&rft.jtitle=Journal%20of%20applied%20statistics&rft.au=Best,%20D.%20J.&rft.date=2017-01-02&rft.volume=44&rft.issue=1&rft.spage=16&rft.epage=23&rft.pages=16-23&rft.issn=0266-4763&rft.eissn=1360-0532&rft_id=info:doi/10.1080/02664763.2016.1158245&rft_dat=%3Cproquest_cross%3E1904245302%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-c32655e3ad056539ccca7530a2b5b4ba1e795db029d620176220ec503aaddc683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1861116580&rft_id=info:pmid/&rfr_iscdi=true |