Loading…

Study on cuttings transport behavior in annulus and bottom-hole using CFD-DEM

The increased demand for energy has led to the development of innovative drilling methods and technologies in the oil and gas industry. Inefficient transportation of cuttings causes downhole cleanliness issues, which have drawn widespread attention. One way to overcome cuttings transport inefficienc...

Full description

Saved in:
Bibliographic Details
Published in:Particulate science and technology 2024-07, Vol.42 (5), p.775-788
Main Authors: Hu, Jinshuai, Huang, Jizhong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The increased demand for energy has led to the development of innovative drilling methods and technologies in the oil and gas industry. Inefficient transportation of cuttings causes downhole cleanliness issues, which have drawn widespread attention. One way to overcome cuttings transport inefficiency is to use suitable modeling methods to determine capable drilling parameters that will ensure the effective removal of cuttings particles. In this paper, Computational Fluid Dynamics (CFD) and Discrete Element Method (DEM) are combined to deeply investigate the impact of various drill parameters on cutting transport. The effects of cuttings particle size, eccentricity, fluid velocity, drill pipe/bit rotation speed, and bit offset angle are analyzed by studying the velocity of cuttings particles and the spatial distribution of particles in the annulus and bottom-hole. The results show that an increase in eccentricity and particle size reduces the velocity of cuttings particles, with the velocity decreasing more significantly when the eccentricity is greater than 0.5 and the particle size exceeds 2 mm. An increase in fluid velocity and speed of drill pipe/bit significantly increases the velocity of cuttings particles, which has a positive feedback effect on the migration of cuttings particles in the downhole. Bit offset angle leads to changes in the bottom-hole spatial structure and reduces the cuttings transport efficiency. These findings provide a useful strategy for improving cuttings migration and downhole cleaning.
ISSN:0272-6351
1548-0046
DOI:10.1080/02726351.2023.2284210