Loading…
Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters
Fine airborne particles (
Saved in:
Published in: | Aerosol science and technology 2024-03, Vol.58 (3), p.276-287 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c286t-fa879523eca7a2c68cc32e9ba57abb027412037ccbbed56fe934675e5699f59d3 |
container_end_page | 287 |
container_issue | 3 |
container_start_page | 276 |
container_title | Aerosol science and technology |
container_volume | 58 |
creator | Rasheed, Rawand M. Lentz, John M. Zobayed, Irfan M. Liu, Zhen Rajappan, Anoop Gonzalez, Damian Preston, Daniel J. |
description | Fine airborne particles ( |
doi_str_mv | 10.1080/02786826.2024.2305822 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02786826_2024_2305822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931064933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-fa879523eca7a2c68cc32e9ba57abb027412037ccbbed56fe934675e5699f59d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BKHguWs-mjS5uSx-wYIXPYc0nWDWbFOTrrr_3tbVq6dhmOd9YR6ELgleECzxNaa1FJKKBcW0WlCGuaT0CM0Ip6SsmZTHaDYx5QSdorOcNxhjUlMyQ2_L9hWyj13hYrJQmM6EffZ5Wos-wQd0w3SNruhNGrwNUCTIu9xD9xPzXbHdhcH3Ab6gHVcYKRMKG02AbKEbS50PA6R8jk6cCRkufuccvdzdPq8eyvXT_eNquS4tlWIonZG14pSBNbWhVkhrGQXVGF6bphkfqQjFrLa2aaDlwoFilag5cKGU46plc3R16O1TfN9BHvQm7tL4WNZUMYJFpRgbKX6gbIo5J3C6T35r0l4TrCev-s-rnrzqX69j7uaQ893oaGs-YwqtHsw-xOSS6azPmv1f8Q19uYGu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931064933</pqid></control><display><type>article</type><title>Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters</title><source>Taylor and Francis Science and Technology Collection</source><source>IngentaConnect Journals</source><creator>Rasheed, Rawand M. ; Lentz, John M. ; Zobayed, Irfan M. ; Liu, Zhen ; Rajappan, Anoop ; Gonzalez, Damian ; Preston, Daniel J.</creator><creatorcontrib>Rasheed, Rawand M. ; Lentz, John M. ; Zobayed, Irfan M. ; Liu, Zhen ; Rajappan, Anoop ; Gonzalez, Damian ; Preston, Daniel J.</creatorcontrib><description>Fine airborne particles (<10 µm) pose challenges for engineered systems, human health, and environmental pollution. This work investigates the relative influences of van der Waals and capillary adhesion forces during filtration to guide the design of multiplexed inertial coalescence filters, which are constructed with a parallel series of helical passageways designed for low pressure drop (<150 Pa) and capture of fine particulate matter (5-50 μm). Specifically, we experimentally quantified the influence of particle adhesion forces on filtration efficiency for capture of 6.1 µm activated carbon particle clusters. Filtration efficiency for dry filters, where van der Waals adhesion forces dominate, is significantly diminished beyond a threshold flowrate due to the Saffman lift force, which causes wall-bound particle clusters to detach from the interior filter surfaces. For wetted filters, the capillary adhesion force is orders of magnitude greater than the Saffman lift force, and consequently the filtration efficiency is not adversely affected. We developed models for filter pressure drop and filtration efficiency accounting for the influence of particle adhesion forces; these models showed good agreement with experimental results. Filter quality factor (QF) was determined for varying particle sizes and flowrates and can be used as a design guideline for use-case-specific filter optimization, which is enabled by the customizable additive manufacturing approach used to fabricate the filters. Due to its versatility and low-pressure-drop nature, this filtration approach could find use in heating, ventilation, and air conditioning (HVAC), large particle and dust filtration in industrial processes, cleanroom pre-filtration, and beyond.
Copyright © 2024 American Association for Aerosol Research</description><identifier>ISSN: 0278-6826</identifier><identifier>EISSN: 1521-7388</identifier><identifier>DOI: 10.1080/02786826.2024.2305822</identifier><language>eng</language><publisher>New York: Taylor & Francis</publisher><subject>Activated carbon ; Adhesion ; Aerosol research ; Air conditioning ; Cleanrooms ; Clusters ; Coalescence ; Design optimization ; Efficiency ; Environmental health ; Environmental pollution ; Filters ; Filtration ; Flow rates ; Low pressure ; Multiplexing ; Particulate matter ; Passageways ; Pressure drop ; Se-Jin Yook ; Ventilation</subject><ispartof>Aerosol science and technology, 2024-03, Vol.58 (3), p.276-287</ispartof><rights>2024 American Association for Aerosol Research 2024</rights><rights>2024 American Association for Aerosol Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-fa879523eca7a2c68cc32e9ba57abb027412037ccbbed56fe934675e5699f59d3</cites><orcidid>0000-0002-6843-509X ; 0000-0002-1089-5982 ; 0000-0001-5160-5489 ; 0000-0002-0096-0285 ; 0000-0003-3766-2991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rasheed, Rawand M.</creatorcontrib><creatorcontrib>Lentz, John M.</creatorcontrib><creatorcontrib>Zobayed, Irfan M.</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Rajappan, Anoop</creatorcontrib><creatorcontrib>Gonzalez, Damian</creatorcontrib><creatorcontrib>Preston, Daniel J.</creatorcontrib><title>Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters</title><title>Aerosol science and technology</title><description>Fine airborne particles (<10 µm) pose challenges for engineered systems, human health, and environmental pollution. This work investigates the relative influences of van der Waals and capillary adhesion forces during filtration to guide the design of multiplexed inertial coalescence filters, which are constructed with a parallel series of helical passageways designed for low pressure drop (<150 Pa) and capture of fine particulate matter (5-50 μm). Specifically, we experimentally quantified the influence of particle adhesion forces on filtration efficiency for capture of 6.1 µm activated carbon particle clusters. Filtration efficiency for dry filters, where van der Waals adhesion forces dominate, is significantly diminished beyond a threshold flowrate due to the Saffman lift force, which causes wall-bound particle clusters to detach from the interior filter surfaces. For wetted filters, the capillary adhesion force is orders of magnitude greater than the Saffman lift force, and consequently the filtration efficiency is not adversely affected. We developed models for filter pressure drop and filtration efficiency accounting for the influence of particle adhesion forces; these models showed good agreement with experimental results. Filter quality factor (QF) was determined for varying particle sizes and flowrates and can be used as a design guideline for use-case-specific filter optimization, which is enabled by the customizable additive manufacturing approach used to fabricate the filters. Due to its versatility and low-pressure-drop nature, this filtration approach could find use in heating, ventilation, and air conditioning (HVAC), large particle and dust filtration in industrial processes, cleanroom pre-filtration, and beyond.
Copyright © 2024 American Association for Aerosol Research</description><subject>Activated carbon</subject><subject>Adhesion</subject><subject>Aerosol research</subject><subject>Air conditioning</subject><subject>Cleanrooms</subject><subject>Clusters</subject><subject>Coalescence</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Environmental health</subject><subject>Environmental pollution</subject><subject>Filters</subject><subject>Filtration</subject><subject>Flow rates</subject><subject>Low pressure</subject><subject>Multiplexing</subject><subject>Particulate matter</subject><subject>Passageways</subject><subject>Pressure drop</subject><subject>Se-Jin Yook</subject><subject>Ventilation</subject><issn>0278-6826</issn><issn>1521-7388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BKHguWs-mjS5uSx-wYIXPYc0nWDWbFOTrrr_3tbVq6dhmOd9YR6ELgleECzxNaa1FJKKBcW0WlCGuaT0CM0Ip6SsmZTHaDYx5QSdorOcNxhjUlMyQ2_L9hWyj13hYrJQmM6EffZ5Wos-wQd0w3SNruhNGrwNUCTIu9xD9xPzXbHdhcH3Ab6gHVcYKRMKG02AbKEbS50PA6R8jk6cCRkufuccvdzdPq8eyvXT_eNquS4tlWIonZG14pSBNbWhVkhrGQXVGF6bphkfqQjFrLa2aaDlwoFilag5cKGU46plc3R16O1TfN9BHvQm7tL4WNZUMYJFpRgbKX6gbIo5J3C6T35r0l4TrCev-s-rnrzqX69j7uaQ893oaGs-YwqtHsw-xOSS6azPmv1f8Q19uYGu</recordid><startdate>20240303</startdate><enddate>20240303</enddate><creator>Rasheed, Rawand M.</creator><creator>Lentz, John M.</creator><creator>Zobayed, Irfan M.</creator><creator>Liu, Zhen</creator><creator>Rajappan, Anoop</creator><creator>Gonzalez, Damian</creator><creator>Preston, Daniel J.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>KL.</scope><orcidid>https://orcid.org/0000-0002-6843-509X</orcidid><orcidid>https://orcid.org/0000-0002-1089-5982</orcidid><orcidid>https://orcid.org/0000-0001-5160-5489</orcidid><orcidid>https://orcid.org/0000-0002-0096-0285</orcidid><orcidid>https://orcid.org/0000-0003-3766-2991</orcidid></search><sort><creationdate>20240303</creationdate><title>Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters</title><author>Rasheed, Rawand M. ; Lentz, John M. ; Zobayed, Irfan M. ; Liu, Zhen ; Rajappan, Anoop ; Gonzalez, Damian ; Preston, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-fa879523eca7a2c68cc32e9ba57abb027412037ccbbed56fe934675e5699f59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Adhesion</topic><topic>Aerosol research</topic><topic>Air conditioning</topic><topic>Cleanrooms</topic><topic>Clusters</topic><topic>Coalescence</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Environmental health</topic><topic>Environmental pollution</topic><topic>Filters</topic><topic>Filtration</topic><topic>Flow rates</topic><topic>Low pressure</topic><topic>Multiplexing</topic><topic>Particulate matter</topic><topic>Passageways</topic><topic>Pressure drop</topic><topic>Se-Jin Yook</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasheed, Rawand M.</creatorcontrib><creatorcontrib>Lentz, John M.</creatorcontrib><creatorcontrib>Zobayed, Irfan M.</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Rajappan, Anoop</creatorcontrib><creatorcontrib>Gonzalez, Damian</creatorcontrib><creatorcontrib>Preston, Daniel J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Aerosol science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasheed, Rawand M.</au><au>Lentz, John M.</au><au>Zobayed, Irfan M.</au><au>Liu, Zhen</au><au>Rajappan, Anoop</au><au>Gonzalez, Damian</au><au>Preston, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters</atitle><jtitle>Aerosol science and technology</jtitle><date>2024-03-03</date><risdate>2024</risdate><volume>58</volume><issue>3</issue><spage>276</spage><epage>287</epage><pages>276-287</pages><issn>0278-6826</issn><eissn>1521-7388</eissn><abstract>Fine airborne particles (<10 µm) pose challenges for engineered systems, human health, and environmental pollution. This work investigates the relative influences of van der Waals and capillary adhesion forces during filtration to guide the design of multiplexed inertial coalescence filters, which are constructed with a parallel series of helical passageways designed for low pressure drop (<150 Pa) and capture of fine particulate matter (5-50 μm). Specifically, we experimentally quantified the influence of particle adhesion forces on filtration efficiency for capture of 6.1 µm activated carbon particle clusters. Filtration efficiency for dry filters, where van der Waals adhesion forces dominate, is significantly diminished beyond a threshold flowrate due to the Saffman lift force, which causes wall-bound particle clusters to detach from the interior filter surfaces. For wetted filters, the capillary adhesion force is orders of magnitude greater than the Saffman lift force, and consequently the filtration efficiency is not adversely affected. We developed models for filter pressure drop and filtration efficiency accounting for the influence of particle adhesion forces; these models showed good agreement with experimental results. Filter quality factor (QF) was determined for varying particle sizes and flowrates and can be used as a design guideline for use-case-specific filter optimization, which is enabled by the customizable additive manufacturing approach used to fabricate the filters. Due to its versatility and low-pressure-drop nature, this filtration approach could find use in heating, ventilation, and air conditioning (HVAC), large particle and dust filtration in industrial processes, cleanroom pre-filtration, and beyond.
Copyright © 2024 American Association for Aerosol Research</abstract><cop>New York</cop><pub>Taylor & Francis</pub><doi>10.1080/02786826.2024.2305822</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6843-509X</orcidid><orcidid>https://orcid.org/0000-0002-1089-5982</orcidid><orcidid>https://orcid.org/0000-0001-5160-5489</orcidid><orcidid>https://orcid.org/0000-0002-0096-0285</orcidid><orcidid>https://orcid.org/0000-0003-3766-2991</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-6826 |
ispartof | Aerosol science and technology, 2024-03, Vol.58 (3), p.276-287 |
issn | 0278-6826 1521-7388 |
language | eng |
recordid | cdi_crossref_primary_10_1080_02786826_2024_2305822 |
source | Taylor and Francis Science and Technology Collection; IngentaConnect Journals |
subjects | Activated carbon Adhesion Aerosol research Air conditioning Cleanrooms Clusters Coalescence Design optimization Efficiency Environmental health Environmental pollution Filters Filtration Flow rates Low pressure Multiplexing Particulate matter Passageways Pressure drop Se-Jin Yook Ventilation |
title | Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adhesion%20force%20analysis%20for%20prevention%20of%20particle%20resuspension%20in%20multiplexed%20inertial%20coalescence%20filters&rft.jtitle=Aerosol%20science%20and%20technology&rft.au=Rasheed,%20Rawand%20M.&rft.date=2024-03-03&rft.volume=58&rft.issue=3&rft.spage=276&rft.epage=287&rft.pages=276-287&rft.issn=0278-6826&rft.eissn=1521-7388&rft_id=info:doi/10.1080/02786826.2024.2305822&rft_dat=%3Cproquest_cross%3E2931064933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-fa879523eca7a2c68cc32e9ba57abb027412037ccbbed56fe934675e5699f59d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931064933&rft_id=info:pmid/&rfr_iscdi=true |