Loading…

Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters

Fine airborne particles (

Saved in:
Bibliographic Details
Published in:Aerosol science and technology 2024-03, Vol.58 (3), p.276-287
Main Authors: Rasheed, Rawand M., Lentz, John M., Zobayed, Irfan M., Liu, Zhen, Rajappan, Anoop, Gonzalez, Damian, Preston, Daniel J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c286t-fa879523eca7a2c68cc32e9ba57abb027412037ccbbed56fe934675e5699f59d3
container_end_page 287
container_issue 3
container_start_page 276
container_title Aerosol science and technology
container_volume 58
creator Rasheed, Rawand M.
Lentz, John M.
Zobayed, Irfan M.
Liu, Zhen
Rajappan, Anoop
Gonzalez, Damian
Preston, Daniel J.
description Fine airborne particles (
doi_str_mv 10.1080/02786826.2024.2305822
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_02786826_2024_2305822</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2931064933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-fa879523eca7a2c68cc32e9ba57abb027412037ccbbed56fe934675e5699f59d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-BKHguWs-mjS5uSx-wYIXPYc0nWDWbFOTrrr_3tbVq6dhmOd9YR6ELgleECzxNaa1FJKKBcW0WlCGuaT0CM0Ip6SsmZTHaDYx5QSdorOcNxhjUlMyQ2_L9hWyj13hYrJQmM6EffZ5Wos-wQd0w3SNruhNGrwNUCTIu9xD9xPzXbHdhcH3Ab6gHVcYKRMKG02AbKEbS50PA6R8jk6cCRkufuccvdzdPq8eyvXT_eNquS4tlWIonZG14pSBNbWhVkhrGQXVGF6bphkfqQjFrLa2aaDlwoFilag5cKGU46plc3R16O1TfN9BHvQm7tL4WNZUMYJFpRgbKX6gbIo5J3C6T35r0l4TrCev-s-rnrzqX69j7uaQ893oaGs-YwqtHsw-xOSS6azPmv1f8Q19uYGu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931064933</pqid></control><display><type>article</type><title>Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters</title><source>Taylor and Francis Science and Technology Collection</source><source>IngentaConnect Journals</source><creator>Rasheed, Rawand M. ; Lentz, John M. ; Zobayed, Irfan M. ; Liu, Zhen ; Rajappan, Anoop ; Gonzalez, Damian ; Preston, Daniel J.</creator><creatorcontrib>Rasheed, Rawand M. ; Lentz, John M. ; Zobayed, Irfan M. ; Liu, Zhen ; Rajappan, Anoop ; Gonzalez, Damian ; Preston, Daniel J.</creatorcontrib><description>Fine airborne particles (&lt;10 µm) pose challenges for engineered systems, human health, and environmental pollution. This work investigates the relative influences of van der Waals and capillary adhesion forces during filtration to guide the design of multiplexed inertial coalescence filters, which are constructed with a parallel series of helical passageways designed for low pressure drop (&lt;150 Pa) and capture of fine particulate matter (5-50 μm). Specifically, we experimentally quantified the influence of particle adhesion forces on filtration efficiency for capture of 6.1 µm activated carbon particle clusters. Filtration efficiency for dry filters, where van der Waals adhesion forces dominate, is significantly diminished beyond a threshold flowrate due to the Saffman lift force, which causes wall-bound particle clusters to detach from the interior filter surfaces. For wetted filters, the capillary adhesion force is orders of magnitude greater than the Saffman lift force, and consequently the filtration efficiency is not adversely affected. We developed models for filter pressure drop and filtration efficiency accounting for the influence of particle adhesion forces; these models showed good agreement with experimental results. Filter quality factor (QF) was determined for varying particle sizes and flowrates and can be used as a design guideline for use-case-specific filter optimization, which is enabled by the customizable additive manufacturing approach used to fabricate the filters. Due to its versatility and low-pressure-drop nature, this filtration approach could find use in heating, ventilation, and air conditioning (HVAC), large particle and dust filtration in industrial processes, cleanroom pre-filtration, and beyond. Copyright © 2024 American Association for Aerosol Research</description><identifier>ISSN: 0278-6826</identifier><identifier>EISSN: 1521-7388</identifier><identifier>DOI: 10.1080/02786826.2024.2305822</identifier><language>eng</language><publisher>New York: Taylor &amp; Francis</publisher><subject>Activated carbon ; Adhesion ; Aerosol research ; Air conditioning ; Cleanrooms ; Clusters ; Coalescence ; Design optimization ; Efficiency ; Environmental health ; Environmental pollution ; Filters ; Filtration ; Flow rates ; Low pressure ; Multiplexing ; Particulate matter ; Passageways ; Pressure drop ; Se-Jin Yook ; Ventilation</subject><ispartof>Aerosol science and technology, 2024-03, Vol.58 (3), p.276-287</ispartof><rights>2024 American Association for Aerosol Research 2024</rights><rights>2024 American Association for Aerosol Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-fa879523eca7a2c68cc32e9ba57abb027412037ccbbed56fe934675e5699f59d3</cites><orcidid>0000-0002-6843-509X ; 0000-0002-1089-5982 ; 0000-0001-5160-5489 ; 0000-0002-0096-0285 ; 0000-0003-3766-2991</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rasheed, Rawand M.</creatorcontrib><creatorcontrib>Lentz, John M.</creatorcontrib><creatorcontrib>Zobayed, Irfan M.</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Rajappan, Anoop</creatorcontrib><creatorcontrib>Gonzalez, Damian</creatorcontrib><creatorcontrib>Preston, Daniel J.</creatorcontrib><title>Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters</title><title>Aerosol science and technology</title><description>Fine airborne particles (&lt;10 µm) pose challenges for engineered systems, human health, and environmental pollution. This work investigates the relative influences of van der Waals and capillary adhesion forces during filtration to guide the design of multiplexed inertial coalescence filters, which are constructed with a parallel series of helical passageways designed for low pressure drop (&lt;150 Pa) and capture of fine particulate matter (5-50 μm). Specifically, we experimentally quantified the influence of particle adhesion forces on filtration efficiency for capture of 6.1 µm activated carbon particle clusters. Filtration efficiency for dry filters, where van der Waals adhesion forces dominate, is significantly diminished beyond a threshold flowrate due to the Saffman lift force, which causes wall-bound particle clusters to detach from the interior filter surfaces. For wetted filters, the capillary adhesion force is orders of magnitude greater than the Saffman lift force, and consequently the filtration efficiency is not adversely affected. We developed models for filter pressure drop and filtration efficiency accounting for the influence of particle adhesion forces; these models showed good agreement with experimental results. Filter quality factor (QF) was determined for varying particle sizes and flowrates and can be used as a design guideline for use-case-specific filter optimization, which is enabled by the customizable additive manufacturing approach used to fabricate the filters. Due to its versatility and low-pressure-drop nature, this filtration approach could find use in heating, ventilation, and air conditioning (HVAC), large particle and dust filtration in industrial processes, cleanroom pre-filtration, and beyond. Copyright © 2024 American Association for Aerosol Research</description><subject>Activated carbon</subject><subject>Adhesion</subject><subject>Aerosol research</subject><subject>Air conditioning</subject><subject>Cleanrooms</subject><subject>Clusters</subject><subject>Coalescence</subject><subject>Design optimization</subject><subject>Efficiency</subject><subject>Environmental health</subject><subject>Environmental pollution</subject><subject>Filters</subject><subject>Filtration</subject><subject>Flow rates</subject><subject>Low pressure</subject><subject>Multiplexing</subject><subject>Particulate matter</subject><subject>Passageways</subject><subject>Pressure drop</subject><subject>Se-Jin Yook</subject><subject>Ventilation</subject><issn>0278-6826</issn><issn>1521-7388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-BKHguWs-mjS5uSx-wYIXPYc0nWDWbFOTrrr_3tbVq6dhmOd9YR6ELgleECzxNaa1FJKKBcW0WlCGuaT0CM0Ip6SsmZTHaDYx5QSdorOcNxhjUlMyQ2_L9hWyj13hYrJQmM6EffZ5Wos-wQd0w3SNruhNGrwNUCTIu9xD9xPzXbHdhcH3Ab6gHVcYKRMKG02AbKEbS50PA6R8jk6cCRkufuccvdzdPq8eyvXT_eNquS4tlWIonZG14pSBNbWhVkhrGQXVGF6bphkfqQjFrLa2aaDlwoFilag5cKGU46plc3R16O1TfN9BHvQm7tL4WNZUMYJFpRgbKX6gbIo5J3C6T35r0l4TrCev-s-rnrzqX69j7uaQ893oaGs-YwqtHsw-xOSS6azPmv1f8Q19uYGu</recordid><startdate>20240303</startdate><enddate>20240303</enddate><creator>Rasheed, Rawand M.</creator><creator>Lentz, John M.</creator><creator>Zobayed, Irfan M.</creator><creator>Liu, Zhen</creator><creator>Rajappan, Anoop</creator><creator>Gonzalez, Damian</creator><creator>Preston, Daniel J.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>KL.</scope><orcidid>https://orcid.org/0000-0002-6843-509X</orcidid><orcidid>https://orcid.org/0000-0002-1089-5982</orcidid><orcidid>https://orcid.org/0000-0001-5160-5489</orcidid><orcidid>https://orcid.org/0000-0002-0096-0285</orcidid><orcidid>https://orcid.org/0000-0003-3766-2991</orcidid></search><sort><creationdate>20240303</creationdate><title>Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters</title><author>Rasheed, Rawand M. ; Lentz, John M. ; Zobayed, Irfan M. ; Liu, Zhen ; Rajappan, Anoop ; Gonzalez, Damian ; Preston, Daniel J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-fa879523eca7a2c68cc32e9ba57abb027412037ccbbed56fe934675e5699f59d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Activated carbon</topic><topic>Adhesion</topic><topic>Aerosol research</topic><topic>Air conditioning</topic><topic>Cleanrooms</topic><topic>Clusters</topic><topic>Coalescence</topic><topic>Design optimization</topic><topic>Efficiency</topic><topic>Environmental health</topic><topic>Environmental pollution</topic><topic>Filters</topic><topic>Filtration</topic><topic>Flow rates</topic><topic>Low pressure</topic><topic>Multiplexing</topic><topic>Particulate matter</topic><topic>Passageways</topic><topic>Pressure drop</topic><topic>Se-Jin Yook</topic><topic>Ventilation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasheed, Rawand M.</creatorcontrib><creatorcontrib>Lentz, John M.</creatorcontrib><creatorcontrib>Zobayed, Irfan M.</creatorcontrib><creatorcontrib>Liu, Zhen</creatorcontrib><creatorcontrib>Rajappan, Anoop</creatorcontrib><creatorcontrib>Gonzalez, Damian</creatorcontrib><creatorcontrib>Preston, Daniel J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Aerosol science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasheed, Rawand M.</au><au>Lentz, John M.</au><au>Zobayed, Irfan M.</au><au>Liu, Zhen</au><au>Rajappan, Anoop</au><au>Gonzalez, Damian</au><au>Preston, Daniel J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters</atitle><jtitle>Aerosol science and technology</jtitle><date>2024-03-03</date><risdate>2024</risdate><volume>58</volume><issue>3</issue><spage>276</spage><epage>287</epage><pages>276-287</pages><issn>0278-6826</issn><eissn>1521-7388</eissn><abstract>Fine airborne particles (&lt;10 µm) pose challenges for engineered systems, human health, and environmental pollution. This work investigates the relative influences of van der Waals and capillary adhesion forces during filtration to guide the design of multiplexed inertial coalescence filters, which are constructed with a parallel series of helical passageways designed for low pressure drop (&lt;150 Pa) and capture of fine particulate matter (5-50 μm). Specifically, we experimentally quantified the influence of particle adhesion forces on filtration efficiency for capture of 6.1 µm activated carbon particle clusters. Filtration efficiency for dry filters, where van der Waals adhesion forces dominate, is significantly diminished beyond a threshold flowrate due to the Saffman lift force, which causes wall-bound particle clusters to detach from the interior filter surfaces. For wetted filters, the capillary adhesion force is orders of magnitude greater than the Saffman lift force, and consequently the filtration efficiency is not adversely affected. We developed models for filter pressure drop and filtration efficiency accounting for the influence of particle adhesion forces; these models showed good agreement with experimental results. Filter quality factor (QF) was determined for varying particle sizes and flowrates and can be used as a design guideline for use-case-specific filter optimization, which is enabled by the customizable additive manufacturing approach used to fabricate the filters. Due to its versatility and low-pressure-drop nature, this filtration approach could find use in heating, ventilation, and air conditioning (HVAC), large particle and dust filtration in industrial processes, cleanroom pre-filtration, and beyond. Copyright © 2024 American Association for Aerosol Research</abstract><cop>New York</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/02786826.2024.2305822</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6843-509X</orcidid><orcidid>https://orcid.org/0000-0002-1089-5982</orcidid><orcidid>https://orcid.org/0000-0001-5160-5489</orcidid><orcidid>https://orcid.org/0000-0002-0096-0285</orcidid><orcidid>https://orcid.org/0000-0003-3766-2991</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-6826
ispartof Aerosol science and technology, 2024-03, Vol.58 (3), p.276-287
issn 0278-6826
1521-7388
language eng
recordid cdi_crossref_primary_10_1080_02786826_2024_2305822
source Taylor and Francis Science and Technology Collection; IngentaConnect Journals
subjects Activated carbon
Adhesion
Aerosol research
Air conditioning
Cleanrooms
Clusters
Coalescence
Design optimization
Efficiency
Environmental health
Environmental pollution
Filters
Filtration
Flow rates
Low pressure
Multiplexing
Particulate matter
Passageways
Pressure drop
Se-Jin Yook
Ventilation
title Adhesion force analysis for prevention of particle resuspension in multiplexed inertial coalescence filters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A22%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adhesion%20force%20analysis%20for%20prevention%20of%20particle%20resuspension%20in%20multiplexed%20inertial%20coalescence%20filters&rft.jtitle=Aerosol%20science%20and%20technology&rft.au=Rasheed,%20Rawand%20M.&rft.date=2024-03-03&rft.volume=58&rft.issue=3&rft.spage=276&rft.epage=287&rft.pages=276-287&rft.issn=0278-6826&rft.eissn=1521-7388&rft_id=info:doi/10.1080/02786826.2024.2305822&rft_dat=%3Cproquest_cross%3E2931064933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-fa879523eca7a2c68cc32e9ba57abb027412037ccbbed56fe934675e5699f59d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2931064933&rft_id=info:pmid/&rfr_iscdi=true