Loading…
Effective multi-objective optimization with the coral reefs optimization algorithm
In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to m...
Saved in:
Published in: | Engineering optimization 2016-06, Vol.48 (6), p.966-984 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3 |
---|---|
cites | cdi_FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3 |
container_end_page | 984 |
container_issue | 6 |
container_start_page | 966 |
container_title | Engineering optimization |
container_volume | 48 |
creator | Salcedo-Sanz, S. Pastor-Sánchez, A. Portilla-Figueras, J. A. Prieto, L. |
description | In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor. |
doi_str_mv | 10.1080/0305215X.2015.1078139 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_0305215X_2015_1078139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808080668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjw4mXrJGl2szel1A8oCNKDt5BmE5uS3dQkq9Rf7y6tBz3IwAwzPPPO8CJ0iWGCgcMNUGAEs9cJAcz6UckxrY7QCAOpciAlPUajgckH6BSdxbgBwBSAj9DL3Bitkv3QWdO5ZHO_2hx6v022sV8yWd9mnzats7TWmfJBuixobeJvQro3H3qqOUcnRrqoLw51jJb38-XsMV88PzzN7ha5oiVOOS5XWpEprYli1bRSwFlFVVlAjVXBNSFMMcWNUbBS0mg5rSkesl5RXRtNx-h6L7sN_r3TMYnGRqWdk632XRSYwxBFwXv06g-68V1o--cELsv-EhTVQLE9pYKPMWgjtsE2MuwEBjEYLX6MFoPR4mB0v3e737Ot8aGRnz64WiS5cz6YIFtlo6D_S3wDPdaG0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772250698</pqid></control><display><type>article</type><title>Effective multi-objective optimization with the coral reefs optimization algorithm</title><source>Taylor and Francis Science and Technology Collection</source><creator>Salcedo-Sanz, S. ; Pastor-Sánchez, A. ; Portilla-Figueras, J. A. ; Prieto, L.</creator><creatorcontrib>Salcedo-Sanz, S. ; Pastor-Sánchez, A. ; Portilla-Figueras, J. A. ; Prieto, L.</creatorcontrib><description>In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.</description><identifier>ISSN: 0305-215X</identifier><identifier>EISSN: 1029-0273</identifier><identifier>DOI: 10.1080/0305215X.2015.1078139</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algorithms ; bio-inspired algorithms ; Computation ; Coral reefs ; coral reefs optimization algorithm ; Corals ; extreme learning machines ; Mathematical models ; Molybdenum ; multi-objective optimization ; Optimization ; Optimization algorithms ; Wind speed ; wind speed prediction</subject><ispartof>Engineering optimization, 2016-06, Vol.48 (6), p.966-984</ispartof><rights>2015 Taylor & Francis 2015</rights><rights>2015 Taylor & Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3</citedby><cites>FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><creatorcontrib>Pastor-Sánchez, A.</creatorcontrib><creatorcontrib>Portilla-Figueras, J. A.</creatorcontrib><creatorcontrib>Prieto, L.</creatorcontrib><title>Effective multi-objective optimization with the coral reefs optimization algorithm</title><title>Engineering optimization</title><description>In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.</description><subject>Algorithms</subject><subject>bio-inspired algorithms</subject><subject>Computation</subject><subject>Coral reefs</subject><subject>coral reefs optimization algorithm</subject><subject>Corals</subject><subject>extreme learning machines</subject><subject>Mathematical models</subject><subject>Molybdenum</subject><subject>multi-objective optimization</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Wind speed</subject><subject>wind speed prediction</subject><issn>0305-215X</issn><issn>1029-0273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QVjw4mXrJGl2szel1A8oCNKDt5BmE5uS3dQkq9Rf7y6tBz3IwAwzPPPO8CJ0iWGCgcMNUGAEs9cJAcz6UckxrY7QCAOpciAlPUajgckH6BSdxbgBwBSAj9DL3Bitkv3QWdO5ZHO_2hx6v022sV8yWd9mnzats7TWmfJBuixobeJvQro3H3qqOUcnRrqoLw51jJb38-XsMV88PzzN7ha5oiVOOS5XWpEprYli1bRSwFlFVVlAjVXBNSFMMcWNUbBS0mg5rSkesl5RXRtNx-h6L7sN_r3TMYnGRqWdk632XRSYwxBFwXv06g-68V1o--cELsv-EhTVQLE9pYKPMWgjtsE2MuwEBjEYLX6MFoPR4mB0v3e737Ot8aGRnz64WiS5cz6YIFtlo6D_S3wDPdaG0g</recordid><startdate>20160602</startdate><enddate>20160602</enddate><creator>Salcedo-Sanz, S.</creator><creator>Pastor-Sánchez, A.</creator><creator>Portilla-Figueras, J. A.</creator><creator>Prieto, L.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160602</creationdate><title>Effective multi-objective optimization with the coral reefs optimization algorithm</title><author>Salcedo-Sanz, S. ; Pastor-Sánchez, A. ; Portilla-Figueras, J. A. ; Prieto, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>bio-inspired algorithms</topic><topic>Computation</topic><topic>Coral reefs</topic><topic>coral reefs optimization algorithm</topic><topic>Corals</topic><topic>extreme learning machines</topic><topic>Mathematical models</topic><topic>Molybdenum</topic><topic>multi-objective optimization</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Wind speed</topic><topic>wind speed prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><creatorcontrib>Pastor-Sánchez, A.</creatorcontrib><creatorcontrib>Portilla-Figueras, J. A.</creatorcontrib><creatorcontrib>Prieto, L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo-Sanz, S.</au><au>Pastor-Sánchez, A.</au><au>Portilla-Figueras, J. A.</au><au>Prieto, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective multi-objective optimization with the coral reefs optimization algorithm</atitle><jtitle>Engineering optimization</jtitle><date>2016-06-02</date><risdate>2016</risdate><volume>48</volume><issue>6</issue><spage>966</spage><epage>984</epage><pages>966-984</pages><issn>0305-215X</issn><eissn>1029-0273</eissn><abstract>In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/0305215X.2015.1078139</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-215X |
ispartof | Engineering optimization, 2016-06, Vol.48 (6), p.966-984 |
issn | 0305-215X 1029-0273 |
language | eng |
recordid | cdi_crossref_primary_10_1080_0305215X_2015_1078139 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algorithms bio-inspired algorithms Computation Coral reefs coral reefs optimization algorithm Corals extreme learning machines Mathematical models Molybdenum multi-objective optimization Optimization Optimization algorithms Wind speed wind speed prediction |
title | Effective multi-objective optimization with the coral reefs optimization algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20multi-objective%20optimization%20with%20the%20coral%20reefs%20optimization%20algorithm&rft.jtitle=Engineering%20optimization&rft.au=Salcedo-Sanz,%20S.&rft.date=2016-06-02&rft.volume=48&rft.issue=6&rft.spage=966&rft.epage=984&rft.pages=966-984&rft.issn=0305-215X&rft.eissn=1029-0273&rft_id=info:doi/10.1080/0305215X.2015.1078139&rft_dat=%3Cproquest_cross%3E1808080668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1772250698&rft_id=info:pmid/&rfr_iscdi=true |