Loading…

Effective multi-objective optimization with the coral reefs optimization algorithm

In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to m...

Full description

Saved in:
Bibliographic Details
Published in:Engineering optimization 2016-06, Vol.48 (6), p.966-984
Main Authors: Salcedo-Sanz, S., Pastor-Sánchez, A., Portilla-Figueras, J. A., Prieto, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3
cites cdi_FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3
container_end_page 984
container_issue 6
container_start_page 966
container_title Engineering optimization
container_volume 48
creator Salcedo-Sanz, S.
Pastor-Sánchez, A.
Portilla-Figueras, J. A.
Prieto, L.
description In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.
doi_str_mv 10.1080/0305215X.2015.1078139
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_0305215X_2015_1078139</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808080668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjw4mXrJGl2szel1A8oCNKDt5BmE5uS3dQkq9Rf7y6tBz3IwAwzPPPO8CJ0iWGCgcMNUGAEs9cJAcz6UckxrY7QCAOpciAlPUajgckH6BSdxbgBwBSAj9DL3Bitkv3QWdO5ZHO_2hx6v022sV8yWd9mnzats7TWmfJBuixobeJvQro3H3qqOUcnRrqoLw51jJb38-XsMV88PzzN7ha5oiVOOS5XWpEprYli1bRSwFlFVVlAjVXBNSFMMcWNUbBS0mg5rSkesl5RXRtNx-h6L7sN_r3TMYnGRqWdk632XRSYwxBFwXv06g-68V1o--cELsv-EhTVQLE9pYKPMWgjtsE2MuwEBjEYLX6MFoPR4mB0v3e737Ot8aGRnz64WiS5cz6YIFtlo6D_S3wDPdaG0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1772250698</pqid></control><display><type>article</type><title>Effective multi-objective optimization with the coral reefs optimization algorithm</title><source>Taylor and Francis Science and Technology Collection</source><creator>Salcedo-Sanz, S. ; Pastor-Sánchez, A. ; Portilla-Figueras, J. A. ; Prieto, L.</creator><creatorcontrib>Salcedo-Sanz, S. ; Pastor-Sánchez, A. ; Portilla-Figueras, J. A. ; Prieto, L.</creatorcontrib><description>In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.</description><identifier>ISSN: 0305-215X</identifier><identifier>EISSN: 1029-0273</identifier><identifier>DOI: 10.1080/0305215X.2015.1078139</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algorithms ; bio-inspired algorithms ; Computation ; Coral reefs ; coral reefs optimization algorithm ; Corals ; extreme learning machines ; Mathematical models ; Molybdenum ; multi-objective optimization ; Optimization ; Optimization algorithms ; Wind speed ; wind speed prediction</subject><ispartof>Engineering optimization, 2016-06, Vol.48 (6), p.966-984</ispartof><rights>2015 Taylor &amp; Francis 2015</rights><rights>2015 Taylor &amp; Francis</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3</citedby><cites>FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><creatorcontrib>Pastor-Sánchez, A.</creatorcontrib><creatorcontrib>Portilla-Figueras, J. A.</creatorcontrib><creatorcontrib>Prieto, L.</creatorcontrib><title>Effective multi-objective optimization with the coral reefs optimization algorithm</title><title>Engineering optimization</title><description>In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.</description><subject>Algorithms</subject><subject>bio-inspired algorithms</subject><subject>Computation</subject><subject>Coral reefs</subject><subject>coral reefs optimization algorithm</subject><subject>Corals</subject><subject>extreme learning machines</subject><subject>Mathematical models</subject><subject>Molybdenum</subject><subject>multi-objective optimization</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Wind speed</subject><subject>wind speed prediction</subject><issn>0305-215X</issn><issn>1029-0273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QVjw4mXrJGl2szel1A8oCNKDt5BmE5uS3dQkq9Rf7y6tBz3IwAwzPPPO8CJ0iWGCgcMNUGAEs9cJAcz6UckxrY7QCAOpciAlPUajgckH6BSdxbgBwBSAj9DL3Bitkv3QWdO5ZHO_2hx6v022sV8yWd9mnzats7TWmfJBuixobeJvQro3H3qqOUcnRrqoLw51jJb38-XsMV88PzzN7ha5oiVOOS5XWpEprYli1bRSwFlFVVlAjVXBNSFMMcWNUbBS0mg5rSkesl5RXRtNx-h6L7sN_r3TMYnGRqWdk632XRSYwxBFwXv06g-68V1o--cELsv-EhTVQLE9pYKPMWgjtsE2MuwEBjEYLX6MFoPR4mB0v3e737Ot8aGRnz64WiS5cz6YIFtlo6D_S3wDPdaG0g</recordid><startdate>20160602</startdate><enddate>20160602</enddate><creator>Salcedo-Sanz, S.</creator><creator>Pastor-Sánchez, A.</creator><creator>Portilla-Figueras, J. A.</creator><creator>Prieto, L.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160602</creationdate><title>Effective multi-objective optimization with the coral reefs optimization algorithm</title><author>Salcedo-Sanz, S. ; Pastor-Sánchez, A. ; Portilla-Figueras, J. A. ; Prieto, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>bio-inspired algorithms</topic><topic>Computation</topic><topic>Coral reefs</topic><topic>coral reefs optimization algorithm</topic><topic>Corals</topic><topic>extreme learning machines</topic><topic>Mathematical models</topic><topic>Molybdenum</topic><topic>multi-objective optimization</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Wind speed</topic><topic>wind speed prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Salcedo-Sanz, S.</creatorcontrib><creatorcontrib>Pastor-Sánchez, A.</creatorcontrib><creatorcontrib>Portilla-Figueras, J. A.</creatorcontrib><creatorcontrib>Prieto, L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Salcedo-Sanz, S.</au><au>Pastor-Sánchez, A.</au><au>Portilla-Figueras, J. A.</au><au>Prieto, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective multi-objective optimization with the coral reefs optimization algorithm</atitle><jtitle>Engineering optimization</jtitle><date>2016-06-02</date><risdate>2016</risdate><volume>48</volume><issue>6</issue><spage>966</spage><epage>984</epage><pages>966-984</pages><issn>0305-215X</issn><eissn>1029-0273</eissn><abstract>In this article a new algorithm for multi-objective optimization is presented, the Multi-Objective Coral Reefs Optimization (MO-CRO) algorithm. The algorithm is based on the simulation of processes in coral reefs, such as corals' reproduction and fight for space in the reef. The adaptation to multi-objective problems is a process based on domination or non-domination during the process of fight for space in the reef. The final MO-CRO is an easily-implemented and fast algorithm, simple and robust, since it is able to keep diversity in the population of corals (solutions) in a natural way. The experimental evaluation of this new approach for multi-objective optimization problems is carried out on different multi-objective benchmark problems, where the MO-CRO has shown excellent performance in cases with limited computational resources, and in a real-world problem of wind speed prediction, where the MO-CRO algorithm is used to find the best set of features to predict the wind speed, taking into account two objective functions related to the performance of the prediction and the computation time of the regressor.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/0305215X.2015.1078139</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-215X
ispartof Engineering optimization, 2016-06, Vol.48 (6), p.966-984
issn 0305-215X
1029-0273
language eng
recordid cdi_crossref_primary_10_1080_0305215X_2015_1078139
source Taylor and Francis Science and Technology Collection
subjects Algorithms
bio-inspired algorithms
Computation
Coral reefs
coral reefs optimization algorithm
Corals
extreme learning machines
Mathematical models
Molybdenum
multi-objective optimization
Optimization
Optimization algorithms
Wind speed
wind speed prediction
title Effective multi-objective optimization with the coral reefs optimization algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20multi-objective%20optimization%20with%20the%20coral%20reefs%20optimization%20algorithm&rft.jtitle=Engineering%20optimization&rft.au=Salcedo-Sanz,%20S.&rft.date=2016-06-02&rft.volume=48&rft.issue=6&rft.spage=966&rft.epage=984&rft.pages=966-984&rft.issn=0305-215X&rft.eissn=1029-0273&rft_id=info:doi/10.1080/0305215X.2015.1078139&rft_dat=%3Cproquest_cross%3E1808080668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c371t-17bec243d2c5949c08593c760d1c68e225c5c8ffc0bcafea4d31ea4deb3edfe3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1772250698&rft_id=info:pmid/&rfr_iscdi=true