Loading…
A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification
A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control paramete...
Saved in:
Published in: | Engineering optimization 2020-10, Vol.52 (10), p.1658-1681 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3 |
container_end_page | 1681 |
container_issue | 10 |
container_start_page | 1658 |
container_title | Engineering optimization |
container_volume | 52 |
creator | Zheng, Tongyi Luo, Weili Hou, Rongrong Lu, Zhongrong Cui, Jie |
description | A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control parameters. The natural frequencies and/or mode shapes are utilized in establishing an objective function. The efficiency and robustness of the proposed method are demonstrated by two numerical examples, namely a television tower and a functionally graded material beam. A set of experimental work on a cantilever beam is studied for further verification. Both numerical and experimental results confirm the superiority of the proposed EBL algorithm in terms of convergence and accuracy for structural damage identification, in comparison with particle swarm optimization, the cloud model-based fruit fly optimization algorithm, squirrel search algorithm and teaching-learning-based optimization. |
doi_str_mv | 10.1080/0305215X.2019.1668935 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_0305215X_2019_1668935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437762875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43jpJmv3wZBG_QPCi4C3MZrM1ZTepya5fv97U1qunmcPzvjM8hJwymDEo4RwESM7ky4wDq2Ysz8tKyD0yYcCrDHgh9slkw2Qb6JAcxbgCYAKgnJDvBXX-3XTUfK5NsMZpk9UYTUM7g8FZt6TYLX2ww2tPWx9oHMKohzFgRxvscWmobYwbbGs1Dta7CxptP3a_O0XX7Ir7xKTIe1r_yGNy0GIXzcluTsnzzfXT1V328Hh7f7V4yLQo5ZC-0QDYIhe1ZC1WBdac6bphmoM2NS-kLOeyyucin7MyZwCyrQuDRjPJINdiSs62vevg30YTB7XyY3DppOJzURQ5LwuZKLmldPAxBtOqdfoaw5dioDaa1Z9mtdGsdppT7nKbsy7p6fHDh65RA351PrQBnbZRif8rfgCZ24dY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437762875</pqid></control><display><type>article</type><title>A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zheng, Tongyi ; Luo, Weili ; Hou, Rongrong ; Lu, Zhongrong ; Cui, Jie</creator><creatorcontrib>Zheng, Tongyi ; Luo, Weili ; Hou, Rongrong ; Lu, Zhongrong ; Cui, Jie</creatorcontrib><description>A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control parameters. The natural frequencies and/or mode shapes are utilized in establishing an objective function. The efficiency and robustness of the proposed method are demonstrated by two numerical examples, namely a television tower and a functionally graded material beam. A set of experimental work on a cantilever beam is studied for further verification. Both numerical and experimental results confirm the superiority of the proposed EBL algorithm in terms of convergence and accuracy for structural damage identification, in comparison with particle swarm optimization, the cloud model-based fruit fly optimization algorithm, squirrel search algorithm and teaching-learning-based optimization.</description><identifier>ISSN: 0305-215X</identifier><identifier>EISSN: 1029-0273</identifier><identifier>DOI: 10.1080/0305215X.2019.1668935</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Cantilever beams ; Computer simulation ; Damage detection ; Damage identification ; experience-based learning algorithm ; Functionally gradient materials ; Machine learning ; mode shape ; natural frequency ; Optimization algorithms ; Parameters ; Particle swarm optimization ; Resonant frequencies ; Robustness (mathematics) ; Search algorithms ; Structural damage ; structural health monitoring</subject><ispartof>Engineering optimization, 2020-10, Vol.52 (10), p.1658-1681</ispartof><rights>2019 Informa UK Limited, trading as Taylor & Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor & Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3</citedby><cites>FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zheng, Tongyi</creatorcontrib><creatorcontrib>Luo, Weili</creatorcontrib><creatorcontrib>Hou, Rongrong</creatorcontrib><creatorcontrib>Lu, Zhongrong</creatorcontrib><creatorcontrib>Cui, Jie</creatorcontrib><title>A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification</title><title>Engineering optimization</title><description>A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control parameters. The natural frequencies and/or mode shapes are utilized in establishing an objective function. The efficiency and robustness of the proposed method are demonstrated by two numerical examples, namely a television tower and a functionally graded material beam. A set of experimental work on a cantilever beam is studied for further verification. Both numerical and experimental results confirm the superiority of the proposed EBL algorithm in terms of convergence and accuracy for structural damage identification, in comparison with particle swarm optimization, the cloud model-based fruit fly optimization algorithm, squirrel search algorithm and teaching-learning-based optimization.</description><subject>Cantilever beams</subject><subject>Computer simulation</subject><subject>Damage detection</subject><subject>Damage identification</subject><subject>experience-based learning algorithm</subject><subject>Functionally gradient materials</subject><subject>Machine learning</subject><subject>mode shape</subject><subject>natural frequency</subject><subject>Optimization algorithms</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Resonant frequencies</subject><subject>Robustness (mathematics)</subject><subject>Search algorithms</subject><subject>Structural damage</subject><subject>structural health monitoring</subject><issn>0305-215X</issn><issn>1029-0273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43jpJmv3wZBG_QPCi4C3MZrM1ZTepya5fv97U1qunmcPzvjM8hJwymDEo4RwESM7ky4wDq2Ysz8tKyD0yYcCrDHgh9slkw2Qb6JAcxbgCYAKgnJDvBXX-3XTUfK5NsMZpk9UYTUM7g8FZt6TYLX2ww2tPWx9oHMKohzFgRxvscWmobYwbbGs1Dta7CxptP3a_O0XX7Ir7xKTIe1r_yGNy0GIXzcluTsnzzfXT1V328Hh7f7V4yLQo5ZC-0QDYIhe1ZC1WBdac6bphmoM2NS-kLOeyyucin7MyZwCyrQuDRjPJINdiSs62vevg30YTB7XyY3DppOJzURQ5LwuZKLmldPAxBtOqdfoaw5dioDaa1Z9mtdGsdppT7nKbsy7p6fHDh65RA351PrQBnbZRif8rfgCZ24dY</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Zheng, Tongyi</creator><creator>Luo, Weili</creator><creator>Hou, Rongrong</creator><creator>Lu, Zhongrong</creator><creator>Cui, Jie</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201002</creationdate><title>A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification</title><author>Zheng, Tongyi ; Luo, Weili ; Hou, Rongrong ; Lu, Zhongrong ; Cui, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cantilever beams</topic><topic>Computer simulation</topic><topic>Damage detection</topic><topic>Damage identification</topic><topic>experience-based learning algorithm</topic><topic>Functionally gradient materials</topic><topic>Machine learning</topic><topic>mode shape</topic><topic>natural frequency</topic><topic>Optimization algorithms</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Resonant frequencies</topic><topic>Robustness (mathematics)</topic><topic>Search algorithms</topic><topic>Structural damage</topic><topic>structural health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Tongyi</creatorcontrib><creatorcontrib>Luo, Weili</creatorcontrib><creatorcontrib>Hou, Rongrong</creatorcontrib><creatorcontrib>Lu, Zhongrong</creatorcontrib><creatorcontrib>Cui, Jie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Tongyi</au><au>Luo, Weili</au><au>Hou, Rongrong</au><au>Lu, Zhongrong</au><au>Cui, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification</atitle><jtitle>Engineering optimization</jtitle><date>2020-10-02</date><risdate>2020</risdate><volume>52</volume><issue>10</issue><spage>1658</spage><epage>1681</epage><pages>1658-1681</pages><issn>0305-215X</issn><eissn>1029-0273</eissn><abstract>A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control parameters. The natural frequencies and/or mode shapes are utilized in establishing an objective function. The efficiency and robustness of the proposed method are demonstrated by two numerical examples, namely a television tower and a functionally graded material beam. A set of experimental work on a cantilever beam is studied for further verification. Both numerical and experimental results confirm the superiority of the proposed EBL algorithm in terms of convergence and accuracy for structural damage identification, in comparison with particle swarm optimization, the cloud model-based fruit fly optimization algorithm, squirrel search algorithm and teaching-learning-based optimization.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/0305215X.2019.1668935</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-215X |
ispartof | Engineering optimization, 2020-10, Vol.52 (10), p.1658-1681 |
issn | 0305-215X 1029-0273 |
language | eng |
recordid | cdi_crossref_primary_10_1080_0305215X_2019_1668935 |
source | Taylor and Francis Science and Technology Collection |
subjects | Cantilever beams Computer simulation Damage detection Damage identification experience-based learning algorithm Functionally gradient materials Machine learning mode shape natural frequency Optimization algorithms Parameters Particle swarm optimization Resonant frequencies Robustness (mathematics) Search algorithms Structural damage structural health monitoring |
title | A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20experience-based%20learning%20algorithm%20for%20structural%20damage%20identification:%20simulation%20and%20experimental%20verification&rft.jtitle=Engineering%20optimization&rft.au=Zheng,%20Tongyi&rft.date=2020-10-02&rft.volume=52&rft.issue=10&rft.spage=1658&rft.epage=1681&rft.pages=1658-1681&rft.issn=0305-215X&rft.eissn=1029-0273&rft_id=info:doi/10.1080/0305215X.2019.1668935&rft_dat=%3Cproquest_cross%3E2437762875%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437762875&rft_id=info:pmid/&rfr_iscdi=true |