Loading…

A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification

A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control paramete...

Full description

Saved in:
Bibliographic Details
Published in:Engineering optimization 2020-10, Vol.52 (10), p.1658-1681
Main Authors: Zheng, Tongyi, Luo, Weili, Hou, Rongrong, Lu, Zhongrong, Cui, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3
cites cdi_FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3
container_end_page 1681
container_issue 10
container_start_page 1658
container_title Engineering optimization
container_volume 52
creator Zheng, Tongyi
Luo, Weili
Hou, Rongrong
Lu, Zhongrong
Cui, Jie
description A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control parameters. The natural frequencies and/or mode shapes are utilized in establishing an objective function. The efficiency and robustness of the proposed method are demonstrated by two numerical examples, namely a television tower and a functionally graded material beam. A set of experimental work on a cantilever beam is studied for further verification. Both numerical and experimental results confirm the superiority of the proposed EBL algorithm in terms of convergence and accuracy for structural damage identification, in comparison with particle swarm optimization, the cloud model-based fruit fly optimization algorithm, squirrel search algorithm and teaching-learning-based optimization.
doi_str_mv 10.1080/0305215X.2019.1668935
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_0305215X_2019_1668935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437762875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QQh43jpJmv3wZBG_QPCi4C3MZrM1ZTepya5fv97U1qunmcPzvjM8hJwymDEo4RwESM7ky4wDq2Ysz8tKyD0yYcCrDHgh9slkw2Qb6JAcxbgCYAKgnJDvBXX-3XTUfK5NsMZpk9UYTUM7g8FZt6TYLX2ww2tPWx9oHMKohzFgRxvscWmobYwbbGs1Dta7CxptP3a_O0XX7Ir7xKTIe1r_yGNy0GIXzcluTsnzzfXT1V328Hh7f7V4yLQo5ZC-0QDYIhe1ZC1WBdac6bphmoM2NS-kLOeyyucin7MyZwCyrQuDRjPJINdiSs62vevg30YTB7XyY3DppOJzURQ5LwuZKLmldPAxBtOqdfoaw5dioDaa1Z9mtdGsdppT7nKbsy7p6fHDh65RA351PrQBnbZRif8rfgCZ24dY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437762875</pqid></control><display><type>article</type><title>A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification</title><source>Taylor and Francis Science and Technology Collection</source><creator>Zheng, Tongyi ; Luo, Weili ; Hou, Rongrong ; Lu, Zhongrong ; Cui, Jie</creator><creatorcontrib>Zheng, Tongyi ; Luo, Weili ; Hou, Rongrong ; Lu, Zhongrong ; Cui, Jie</creatorcontrib><description>A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control parameters. The natural frequencies and/or mode shapes are utilized in establishing an objective function. The efficiency and robustness of the proposed method are demonstrated by two numerical examples, namely a television tower and a functionally graded material beam. A set of experimental work on a cantilever beam is studied for further verification. Both numerical and experimental results confirm the superiority of the proposed EBL algorithm in terms of convergence and accuracy for structural damage identification, in comparison with particle swarm optimization, the cloud model-based fruit fly optimization algorithm, squirrel search algorithm and teaching-learning-based optimization.</description><identifier>ISSN: 0305-215X</identifier><identifier>EISSN: 1029-0273</identifier><identifier>DOI: 10.1080/0305215X.2019.1668935</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Cantilever beams ; Computer simulation ; Damage detection ; Damage identification ; experience-based learning algorithm ; Functionally gradient materials ; Machine learning ; mode shape ; natural frequency ; Optimization algorithms ; Parameters ; Particle swarm optimization ; Resonant frequencies ; Robustness (mathematics) ; Search algorithms ; Structural damage ; structural health monitoring</subject><ispartof>Engineering optimization, 2020-10, Vol.52 (10), p.1658-1681</ispartof><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group 2019</rights><rights>2019 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3</citedby><cites>FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zheng, Tongyi</creatorcontrib><creatorcontrib>Luo, Weili</creatorcontrib><creatorcontrib>Hou, Rongrong</creatorcontrib><creatorcontrib>Lu, Zhongrong</creatorcontrib><creatorcontrib>Cui, Jie</creatorcontrib><title>A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification</title><title>Engineering optimization</title><description>A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control parameters. The natural frequencies and/or mode shapes are utilized in establishing an objective function. The efficiency and robustness of the proposed method are demonstrated by two numerical examples, namely a television tower and a functionally graded material beam. A set of experimental work on a cantilever beam is studied for further verification. Both numerical and experimental results confirm the superiority of the proposed EBL algorithm in terms of convergence and accuracy for structural damage identification, in comparison with particle swarm optimization, the cloud model-based fruit fly optimization algorithm, squirrel search algorithm and teaching-learning-based optimization.</description><subject>Cantilever beams</subject><subject>Computer simulation</subject><subject>Damage detection</subject><subject>Damage identification</subject><subject>experience-based learning algorithm</subject><subject>Functionally gradient materials</subject><subject>Machine learning</subject><subject>mode shape</subject><subject>natural frequency</subject><subject>Optimization algorithms</subject><subject>Parameters</subject><subject>Particle swarm optimization</subject><subject>Resonant frequencies</subject><subject>Robustness (mathematics)</subject><subject>Search algorithms</subject><subject>Structural damage</subject><subject>structural health monitoring</subject><issn>0305-215X</issn><issn>1029-0273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QQh43jpJmv3wZBG_QPCi4C3MZrM1ZTepya5fv97U1qunmcPzvjM8hJwymDEo4RwESM7ky4wDq2Ysz8tKyD0yYcCrDHgh9slkw2Qb6JAcxbgCYAKgnJDvBXX-3XTUfK5NsMZpk9UYTUM7g8FZt6TYLX2ww2tPWx9oHMKohzFgRxvscWmobYwbbGs1Dta7CxptP3a_O0XX7Ir7xKTIe1r_yGNy0GIXzcluTsnzzfXT1V328Hh7f7V4yLQo5ZC-0QDYIhe1ZC1WBdac6bphmoM2NS-kLOeyyucin7MyZwCyrQuDRjPJINdiSs62vevg30YTB7XyY3DppOJzURQ5LwuZKLmldPAxBtOqdfoaw5dioDaa1Z9mtdGsdppT7nKbsy7p6fHDh65RA351PrQBnbZRif8rfgCZ24dY</recordid><startdate>20201002</startdate><enddate>20201002</enddate><creator>Zheng, Tongyi</creator><creator>Luo, Weili</creator><creator>Hou, Rongrong</creator><creator>Lu, Zhongrong</creator><creator>Cui, Jie</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20201002</creationdate><title>A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification</title><author>Zheng, Tongyi ; Luo, Weili ; Hou, Rongrong ; Lu, Zhongrong ; Cui, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cantilever beams</topic><topic>Computer simulation</topic><topic>Damage detection</topic><topic>Damage identification</topic><topic>experience-based learning algorithm</topic><topic>Functionally gradient materials</topic><topic>Machine learning</topic><topic>mode shape</topic><topic>natural frequency</topic><topic>Optimization algorithms</topic><topic>Parameters</topic><topic>Particle swarm optimization</topic><topic>Resonant frequencies</topic><topic>Robustness (mathematics)</topic><topic>Search algorithms</topic><topic>Structural damage</topic><topic>structural health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Tongyi</creatorcontrib><creatorcontrib>Luo, Weili</creatorcontrib><creatorcontrib>Hou, Rongrong</creatorcontrib><creatorcontrib>Lu, Zhongrong</creatorcontrib><creatorcontrib>Cui, Jie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Tongyi</au><au>Luo, Weili</au><au>Hou, Rongrong</au><au>Lu, Zhongrong</au><au>Cui, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification</atitle><jtitle>Engineering optimization</jtitle><date>2020-10-02</date><risdate>2020</risdate><volume>52</volume><issue>10</issue><spage>1658</spage><epage>1681</epage><pages>1658-1681</pages><issn>0305-215X</issn><eissn>1029-0273</eissn><abstract>A simple yet powerful optimization algorithm, named the experience-based learning (EBL) algorithm, is proposed in this article for structural damage identification based on vibration data. This algorithm is free from any algorithm-specific control parameters and requires only common control parameters. The natural frequencies and/or mode shapes are utilized in establishing an objective function. The efficiency and robustness of the proposed method are demonstrated by two numerical examples, namely a television tower and a functionally graded material beam. A set of experimental work on a cantilever beam is studied for further verification. Both numerical and experimental results confirm the superiority of the proposed EBL algorithm in terms of convergence and accuracy for structural damage identification, in comparison with particle swarm optimization, the cloud model-based fruit fly optimization algorithm, squirrel search algorithm and teaching-learning-based optimization.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/0305215X.2019.1668935</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-215X
ispartof Engineering optimization, 2020-10, Vol.52 (10), p.1658-1681
issn 0305-215X
1029-0273
language eng
recordid cdi_crossref_primary_10_1080_0305215X_2019_1668935
source Taylor and Francis Science and Technology Collection
subjects Cantilever beams
Computer simulation
Damage detection
Damage identification
experience-based learning algorithm
Functionally gradient materials
Machine learning
mode shape
natural frequency
Optimization algorithms
Parameters
Particle swarm optimization
Resonant frequencies
Robustness (mathematics)
Search algorithms
Structural damage
structural health monitoring
title A novel experience-based learning algorithm for structural damage identification: simulation and experimental verification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A56%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20experience-based%20learning%20algorithm%20for%20structural%20damage%20identification:%20simulation%20and%20experimental%20verification&rft.jtitle=Engineering%20optimization&rft.au=Zheng,%20Tongyi&rft.date=2020-10-02&rft.volume=52&rft.issue=10&rft.spage=1658&rft.epage=1681&rft.pages=1658-1681&rft.issn=0305-215X&rft.eissn=1029-0273&rft_id=info:doi/10.1080/0305215X.2019.1668935&rft_dat=%3Cproquest_cross%3E2437762875%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-bac00afa23b51fa97ab21cbd1c20ceb27558459643641861005fb7eaec15106c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2437762875&rft_id=info:pmid/&rfr_iscdi=true