Loading…
Optimal design of electric machine with efficient handling of constraints and surrogate assistance
An optimal electric machine design task can be posed as a constrained multi-objective optimization problem. While the objectives require time-consuming finite element analysis, constraints, such as geometric constraints, can often be based on mathematical expressions. This article investigates this...
Saved in:
Published in: | Engineering optimization 2024-02, Vol.56 (2), p.274-292 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An optimal electric machine design task can be posed as a constrained multi-objective optimization problem. While the objectives require time-consuming finite element analysis, constraints, such as geometric constraints, can often be based on mathematical expressions. This article investigates this mixed computationally expensive optimization problem and proposes a computationally efficient optimization method based on evolutionary algorithms. The proposed method always generates feasible solutions by using a generalizable repair operator and also addresses time-consuming objective functions by incorporating surrogate models for their prediction. The article successfully establishes the superiority of the proposed method over a conventional optimization approach. This study demonstrates how a complex engineering design task can be optimized efficiently for multiple objectives and constraints requiring heterogeneous evaluation times. It also shows how optimal solutions can be analysed to select a single preferred solution and harnessed to reveal vital design features common to optimal solutions as design principles. |
---|---|
ISSN: | 0305-215X 1029-0273 |
DOI: | 10.1080/0305215X.2022.2152805 |