Loading…
Interest rate prediction: a neuro-hybrid approach with data preprocessing
The following research implements a differential evolution-based fuzzy-type clustering method with a fuzzy inference neural network after input preprocessing with regression analysis in order to predict future interest rates, particularly 3-month T-bill rates. The empirical results of the proposed m...
Saved in:
Published in: | International journal of general systems 2014-07, Vol.43 (5), p.535-550 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3 |
container_end_page | 550 |
container_issue | 5 |
container_start_page | 535 |
container_title | International journal of general systems |
container_volume | 43 |
creator | Mehdiyev, Nijat Enke, David |
description | The following research implements a differential evolution-based fuzzy-type clustering method with a fuzzy inference neural network after input preprocessing with regression analysis in order to predict future interest rates, particularly 3-month T-bill rates. The empirical results of the proposed model is compared against nonparametric models, such as locally weighted regression and least squares support vector machines, along with two linear benchmark models, the autoregressive model and the random walk model. The root mean square error is reported for comparison. |
doi_str_mv | 10.1080/03081079.2014.883386 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03081079_2014_883386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520964938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pN_BQ8OKl88lL29SLyPBlMPCi55AlqcvompqkjH17U6oXD54CD7__k4c_QtcYFhg43AEFjqGqFwQwW3BOKS9P0AwXJc0LDOwUzUaSj-YcXYSwA8C04GyGVqsuGm9CzLyMJuu90VZF67r7TGadGbzLt8eNtzqTfe-dVNvsYOM20zLKUaeZMiHY7vMSnTWyDebq552jj-en9-Vrvn57WS0f17miJY_5RjcMKjBcYq6ZbFhJCKc14VA2ihDYcAPAVSUTUpXSBQHNiCopraiiVNM5up32pq-_hnS52NugTNvKzrghCJwSdclqyhO9-UN3bvBdui4pqAkGUkJSbFLKuxC8aUTv7V76o8Agxn7Fb79i7FdM_abYwxSzXeP8Xh6cb7WI8tg633jZKRsE_XfDN92-gAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1509210260</pqid></control><display><type>article</type><title>Interest rate prediction: a neuro-hybrid approach with data preprocessing</title><source>Taylor and Francis Science and Technology Collection</source><creator>Mehdiyev, Nijat ; Enke, David</creator><creatorcontrib>Mehdiyev, Nijat ; Enke, David</creatorcontrib><description>The following research implements a differential evolution-based fuzzy-type clustering method with a fuzzy inference neural network after input preprocessing with regression analysis in order to predict future interest rates, particularly 3-month T-bill rates. The empirical results of the proposed model is compared against nonparametric models, such as locally weighted regression and least squares support vector machines, along with two linear benchmark models, the autoregressive model and the random walk model. The root mean square error is reported for comparison.</description><identifier>ISSN: 0308-1079</identifier><identifier>EISSN: 1563-5104</identifier><identifier>DOI: 10.1080/03081079.2014.883386</identifier><language>eng</language><publisher>Abingdon: Taylor & Francis</publisher><subject>Algebra ; and fuzzy inference neural network ; differential evolution-based fuzzy clustering ; Fuzzy logic ; interest rate prediction ; Interest rates ; Least squares method ; Mathematical models ; Mean square errors ; Mean square values ; multiple regression analysis ; Neural networks ; Preprocessing ; Regression ; Regression analysis</subject><ispartof>International journal of general systems, 2014-07, Vol.43 (5), p.535-550</ispartof><rights>2014 Taylor & Francis 2014</rights><rights>Copyright Taylor & Francis Group 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3</citedby><cites>FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mehdiyev, Nijat</creatorcontrib><creatorcontrib>Enke, David</creatorcontrib><title>Interest rate prediction: a neuro-hybrid approach with data preprocessing</title><title>International journal of general systems</title><description>The following research implements a differential evolution-based fuzzy-type clustering method with a fuzzy inference neural network after input preprocessing with regression analysis in order to predict future interest rates, particularly 3-month T-bill rates. The empirical results of the proposed model is compared against nonparametric models, such as locally weighted regression and least squares support vector machines, along with two linear benchmark models, the autoregressive model and the random walk model. The root mean square error is reported for comparison.</description><subject>Algebra</subject><subject>and fuzzy inference neural network</subject><subject>differential evolution-based fuzzy clustering</subject><subject>Fuzzy logic</subject><subject>interest rate prediction</subject><subject>Interest rates</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Mean square values</subject><subject>multiple regression analysis</subject><subject>Neural networks</subject><subject>Preprocessing</subject><subject>Regression</subject><subject>Regression analysis</subject><issn>0308-1079</issn><issn>1563-5104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgCs7pN_BQ8OKl88lL29SLyPBlMPCi55AlqcvompqkjH17U6oXD54CD7__k4c_QtcYFhg43AEFjqGqFwQwW3BOKS9P0AwXJc0LDOwUzUaSj-YcXYSwA8C04GyGVqsuGm9CzLyMJuu90VZF67r7TGadGbzLt8eNtzqTfe-dVNvsYOM20zLKUaeZMiHY7vMSnTWyDebq552jj-en9-Vrvn57WS0f17miJY_5RjcMKjBcYq6ZbFhJCKc14VA2ihDYcAPAVSUTUpXSBQHNiCopraiiVNM5up32pq-_hnS52NugTNvKzrghCJwSdclqyhO9-UN3bvBdui4pqAkGUkJSbFLKuxC8aUTv7V76o8Agxn7Fb79i7FdM_abYwxSzXeP8Xh6cb7WI8tg633jZKRsE_XfDN92-gAI</recordid><startdate>20140704</startdate><enddate>20140704</enddate><creator>Mehdiyev, Nijat</creator><creator>Enke, David</creator><general>Taylor & Francis</general><general>Taylor & Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140704</creationdate><title>Interest rate prediction: a neuro-hybrid approach with data preprocessing</title><author>Mehdiyev, Nijat ; Enke, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>and fuzzy inference neural network</topic><topic>differential evolution-based fuzzy clustering</topic><topic>Fuzzy logic</topic><topic>interest rate prediction</topic><topic>Interest rates</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Mean square values</topic><topic>multiple regression analysis</topic><topic>Neural networks</topic><topic>Preprocessing</topic><topic>Regression</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehdiyev, Nijat</creatorcontrib><creatorcontrib>Enke, David</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of general systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehdiyev, Nijat</au><au>Enke, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interest rate prediction: a neuro-hybrid approach with data preprocessing</atitle><jtitle>International journal of general systems</jtitle><date>2014-07-04</date><risdate>2014</risdate><volume>43</volume><issue>5</issue><spage>535</spage><epage>550</epage><pages>535-550</pages><issn>0308-1079</issn><eissn>1563-5104</eissn><abstract>The following research implements a differential evolution-based fuzzy-type clustering method with a fuzzy inference neural network after input preprocessing with regression analysis in order to predict future interest rates, particularly 3-month T-bill rates. The empirical results of the proposed model is compared against nonparametric models, such as locally weighted regression and least squares support vector machines, along with two linear benchmark models, the autoregressive model and the random walk model. The root mean square error is reported for comparison.</abstract><cop>Abingdon</cop><pub>Taylor & Francis</pub><doi>10.1080/03081079.2014.883386</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-1079 |
ispartof | International journal of general systems, 2014-07, Vol.43 (5), p.535-550 |
issn | 0308-1079 1563-5104 |
language | eng |
recordid | cdi_crossref_primary_10_1080_03081079_2014_883386 |
source | Taylor and Francis Science and Technology Collection |
subjects | Algebra and fuzzy inference neural network differential evolution-based fuzzy clustering Fuzzy logic interest rate prediction Interest rates Least squares method Mathematical models Mean square errors Mean square values multiple regression analysis Neural networks Preprocessing Regression Regression analysis |
title | Interest rate prediction: a neuro-hybrid approach with data preprocessing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interest%20rate%20prediction:%20a%20neuro-hybrid%20approach%20with%20data%20preprocessing&rft.jtitle=International%20journal%20of%20general%20systems&rft.au=Mehdiyev,%20Nijat&rft.date=2014-07-04&rft.volume=43&rft.issue=5&rft.spage=535&rft.epage=550&rft.pages=535-550&rft.issn=0308-1079&rft.eissn=1563-5104&rft_id=info:doi/10.1080/03081079.2014.883386&rft_dat=%3Cproquest_cross%3E1520964938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1509210260&rft_id=info:pmid/&rfr_iscdi=true |