Loading…

Interest rate prediction: a neuro-hybrid approach with data preprocessing

The following research implements a differential evolution-based fuzzy-type clustering method with a fuzzy inference neural network after input preprocessing with regression analysis in order to predict future interest rates, particularly 3-month T-bill rates. The empirical results of the proposed m...

Full description

Saved in:
Bibliographic Details
Published in:International journal of general systems 2014-07, Vol.43 (5), p.535-550
Main Authors: Mehdiyev, Nijat, Enke, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3
cites cdi_FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3
container_end_page 550
container_issue 5
container_start_page 535
container_title International journal of general systems
container_volume 43
creator Mehdiyev, Nijat
Enke, David
description The following research implements a differential evolution-based fuzzy-type clustering method with a fuzzy inference neural network after input preprocessing with regression analysis in order to predict future interest rates, particularly 3-month T-bill rates. The empirical results of the proposed model is compared against nonparametric models, such as locally weighted regression and least squares support vector machines, along with two linear benchmark models, the autoregressive model and the random walk model. The root mean square error is reported for comparison.
doi_str_mv 10.1080/03081079.2014.883386
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03081079_2014_883386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1520964938</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgCs7pN_BQ8OKl88lL29SLyPBlMPCi55AlqcvompqkjH17U6oXD54CD7__k4c_QtcYFhg43AEFjqGqFwQwW3BOKS9P0AwXJc0LDOwUzUaSj-YcXYSwA8C04GyGVqsuGm9CzLyMJuu90VZF67r7TGadGbzLt8eNtzqTfe-dVNvsYOM20zLKUaeZMiHY7vMSnTWyDebq552jj-en9-Vrvn57WS0f17miJY_5RjcMKjBcYq6ZbFhJCKc14VA2ihDYcAPAVSUTUpXSBQHNiCopraiiVNM5up32pq-_hnS52NugTNvKzrghCJwSdclqyhO9-UN3bvBdui4pqAkGUkJSbFLKuxC8aUTv7V76o8Agxn7Fb79i7FdM_abYwxSzXeP8Xh6cb7WI8tg633jZKRsE_XfDN92-gAI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1509210260</pqid></control><display><type>article</type><title>Interest rate prediction: a neuro-hybrid approach with data preprocessing</title><source>Taylor and Francis Science and Technology Collection</source><creator>Mehdiyev, Nijat ; Enke, David</creator><creatorcontrib>Mehdiyev, Nijat ; Enke, David</creatorcontrib><description>The following research implements a differential evolution-based fuzzy-type clustering method with a fuzzy inference neural network after input preprocessing with regression analysis in order to predict future interest rates, particularly 3-month T-bill rates. The empirical results of the proposed model is compared against nonparametric models, such as locally weighted regression and least squares support vector machines, along with two linear benchmark models, the autoregressive model and the random walk model. The root mean square error is reported for comparison.</description><identifier>ISSN: 0308-1079</identifier><identifier>EISSN: 1563-5104</identifier><identifier>DOI: 10.1080/03081079.2014.883386</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algebra ; and fuzzy inference neural network ; differential evolution-based fuzzy clustering ; Fuzzy logic ; interest rate prediction ; Interest rates ; Least squares method ; Mathematical models ; Mean square errors ; Mean square values ; multiple regression analysis ; Neural networks ; Preprocessing ; Regression ; Regression analysis</subject><ispartof>International journal of general systems, 2014-07, Vol.43 (5), p.535-550</ispartof><rights>2014 Taylor &amp; Francis 2014</rights><rights>Copyright Taylor &amp; Francis Group 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3</citedby><cites>FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Mehdiyev, Nijat</creatorcontrib><creatorcontrib>Enke, David</creatorcontrib><title>Interest rate prediction: a neuro-hybrid approach with data preprocessing</title><title>International journal of general systems</title><description>The following research implements a differential evolution-based fuzzy-type clustering method with a fuzzy inference neural network after input preprocessing with regression analysis in order to predict future interest rates, particularly 3-month T-bill rates. The empirical results of the proposed model is compared against nonparametric models, such as locally weighted regression and least squares support vector machines, along with two linear benchmark models, the autoregressive model and the random walk model. The root mean square error is reported for comparison.</description><subject>Algebra</subject><subject>and fuzzy inference neural network</subject><subject>differential evolution-based fuzzy clustering</subject><subject>Fuzzy logic</subject><subject>interest rate prediction</subject><subject>Interest rates</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Mean square errors</subject><subject>Mean square values</subject><subject>multiple regression analysis</subject><subject>Neural networks</subject><subject>Preprocessing</subject><subject>Regression</subject><subject>Regression analysis</subject><issn>0308-1079</issn><issn>1563-5104</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgCs7pN_BQ8OKl88lL29SLyPBlMPCi55AlqcvompqkjH17U6oXD54CD7__k4c_QtcYFhg43AEFjqGqFwQwW3BOKS9P0AwXJc0LDOwUzUaSj-YcXYSwA8C04GyGVqsuGm9CzLyMJuu90VZF67r7TGadGbzLt8eNtzqTfe-dVNvsYOM20zLKUaeZMiHY7vMSnTWyDebq552jj-en9-Vrvn57WS0f17miJY_5RjcMKjBcYq6ZbFhJCKc14VA2ihDYcAPAVSUTUpXSBQHNiCopraiiVNM5up32pq-_hnS52NugTNvKzrghCJwSdclqyhO9-UN3bvBdui4pqAkGUkJSbFLKuxC8aUTv7V76o8Agxn7Fb79i7FdM_abYwxSzXeP8Xh6cb7WI8tg633jZKRsE_XfDN92-gAI</recordid><startdate>20140704</startdate><enddate>20140704</enddate><creator>Mehdiyev, Nijat</creator><creator>Enke, David</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis LLC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140704</creationdate><title>Interest rate prediction: a neuro-hybrid approach with data preprocessing</title><author>Mehdiyev, Nijat ; Enke, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>and fuzzy inference neural network</topic><topic>differential evolution-based fuzzy clustering</topic><topic>Fuzzy logic</topic><topic>interest rate prediction</topic><topic>Interest rates</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Mean square errors</topic><topic>Mean square values</topic><topic>multiple regression analysis</topic><topic>Neural networks</topic><topic>Preprocessing</topic><topic>Regression</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehdiyev, Nijat</creatorcontrib><creatorcontrib>Enke, David</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of general systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehdiyev, Nijat</au><au>Enke, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interest rate prediction: a neuro-hybrid approach with data preprocessing</atitle><jtitle>International journal of general systems</jtitle><date>2014-07-04</date><risdate>2014</risdate><volume>43</volume><issue>5</issue><spage>535</spage><epage>550</epage><pages>535-550</pages><issn>0308-1079</issn><eissn>1563-5104</eissn><abstract>The following research implements a differential evolution-based fuzzy-type clustering method with a fuzzy inference neural network after input preprocessing with regression analysis in order to predict future interest rates, particularly 3-month T-bill rates. The empirical results of the proposed model is compared against nonparametric models, such as locally weighted regression and least squares support vector machines, along with two linear benchmark models, the autoregressive model and the random walk model. The root mean square error is reported for comparison.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03081079.2014.883386</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0308-1079
ispartof International journal of general systems, 2014-07, Vol.43 (5), p.535-550
issn 0308-1079
1563-5104
language eng
recordid cdi_crossref_primary_10_1080_03081079_2014_883386
source Taylor and Francis Science and Technology Collection
subjects Algebra
and fuzzy inference neural network
differential evolution-based fuzzy clustering
Fuzzy logic
interest rate prediction
Interest rates
Least squares method
Mathematical models
Mean square errors
Mean square values
multiple regression analysis
Neural networks
Preprocessing
Regression
Regression analysis
title Interest rate prediction: a neuro-hybrid approach with data preprocessing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A26%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interest%20rate%20prediction:%20a%20neuro-hybrid%20approach%20with%20data%20preprocessing&rft.jtitle=International%20journal%20of%20general%20systems&rft.au=Mehdiyev,%20Nijat&rft.date=2014-07-04&rft.volume=43&rft.issue=5&rft.spage=535&rft.epage=550&rft.pages=535-550&rft.issn=0308-1079&rft.eissn=1563-5104&rft_id=info:doi/10.1080/03081079.2014.883386&rft_dat=%3Cproquest_cross%3E1520964938%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-bdf4070e8a18d4af46228392806fc220b8e008c7a070c7cd520d42c63373c33d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1509210260&rft_id=info:pmid/&rfr_iscdi=true