Loading…
Foundations of compositional models: inference
Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the ap...
Saved in:
Published in: | International journal of general systems 2021-05, Vol.50 (4), p.409-433 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Compositional models, as an alternative to Bayesian networks, are assembled from a system of low-dimensional distributions. Thus the respective apparatus falls fully into probability theory. The present paper surveys the results supporting the design of computational procedures, without which the application of these models to practical problems would be impossible.
The methods of inference cannot do without a possibility to focus on a part of the considered multidimensional model and to incorporate data describing the actual situation. Thus the paper shows how to compute marginals and conditionals of multidimensional models. Also, the paper briefly solves the problem of computing the effect of an intervention, in case the model is interpreted as a causal model. |
---|---|
ISSN: | 0308-1079 1563-5104 |
DOI: | 10.1080/03081079.2021.1895142 |