Loading…

Non-linear positive maps between C-algebras

We present some properties of (not necessarily linear) positive maps between -algebras. We first extend the notion of Lieb functions to that of Lieb positive maps between -algebras. Then we give some basic properties and fundamental inequalities related to such maps. Next, we study n-positive maps (...

Full description

Saved in:
Bibliographic Details
Published in:Linear & multilinear algebra 2020-08, Vol.68 (8), p.1501-1517
Main Authors: Dadkhah, Ali, Moslehian, Mohammad Sal
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c338t-cb95e68e00711bc4f74c304087fc3fb4b923df21f520e28017a86fc9df70470c3
cites cdi_FETCH-LOGICAL-c338t-cb95e68e00711bc4f74c304087fc3fb4b923df21f520e28017a86fc9df70470c3
container_end_page 1517
container_issue 8
container_start_page 1501
container_title Linear & multilinear algebra
container_volume 68
creator Dadkhah, Ali
Moslehian, Mohammad Sal
description We present some properties of (not necessarily linear) positive maps between -algebras. We first extend the notion of Lieb functions to that of Lieb positive maps between -algebras. Then we give some basic properties and fundamental inequalities related to such maps. Next, we study n-positive maps ( ). We show that if for a unital 3-positive map between unital -algebras and some equality holds, then for all . In addition, we prove that for a certain class of unital positive maps between unital -algebras, the inequality holds for all and all positive elements if and only if . Furthermore, we show that if for some α in the unit ball of or in with , the equality holds, then Φ is additive on positive elements of . Moreover, we present a mild condition for a 6-positive map, which ensures its linearity.
doi_str_mv 10.1080/03081087.2018.1547357
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03081087_2018_1547357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441231879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-cb95e68e00711bc4f74c304087fc3fb4b923df21f520e28017a86fc9df70470c3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_QRhwKan35tFkdkrxBUU3ug6ZNJEp08mYTC39987QunV17-I758BHyDXCDEHDHXDQw6NmDFDPUArFpTohE5RzTiXy8pRMRoaO0Dm5yHkNAAK5nJDbt9jSpm69TUUXc93XP77Y2C4Xle933rfFgtrmy1fJ5ktyFmyT_dXxTsnn0-PH4oUu359fFw9L6jjXPXVVKf1cewCFWDkRlHAcxLAdHA-VqErGV4FhkAw804DK6nlw5SooEAocn5KbQ2-X4vfW596s4za1w6RhQiDjqFU5UPJAuRRzTj6YLtUbm_YGwYxezJ8XM3oxRy9D7v6Qq9sQ08buYmpWprf7JqaQbOvqbPj_Fb8CPmd9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441231879</pqid></control><display><type>article</type><title>Non-linear positive maps between C-algebras</title><source>Taylor and Francis Science and Technology Collection</source><creator>Dadkhah, Ali ; Moslehian, Mohammad Sal</creator><creatorcontrib>Dadkhah, Ali ; Moslehian, Mohammad Sal</creatorcontrib><description>We present some properties of (not necessarily linear) positive maps between -algebras. We first extend the notion of Lieb functions to that of Lieb positive maps between -algebras. Then we give some basic properties and fundamental inequalities related to such maps. Next, we study n-positive maps ( ). We show that if for a unital 3-positive map between unital -algebras and some equality holds, then for all . In addition, we prove that for a certain class of unital positive maps between unital -algebras, the inequality holds for all and all positive elements if and only if . Furthermore, we show that if for some α in the unit ball of or in with , the equality holds, then Φ is additive on positive elements of . Moreover, we present a mild condition for a 6-positive map, which ensures its linearity.</description><identifier>ISSN: 0308-1087</identifier><identifier>EISSN: 1563-5139</identifier><identifier>DOI: 10.1080/03081087.2018.1547357</identifier><language>eng</language><publisher>Abingdon: Taylor &amp; Francis</publisher><subject>Algebra ; Lieb map ; Linearity ; n-positive map ; nonlinear map ; superadditive</subject><ispartof>Linear &amp; multilinear algebra, 2020-08, Vol.68 (8), p.1501-1517</ispartof><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group 2018</rights><rights>2018 Informa UK Limited, trading as Taylor &amp; Francis Group</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-cb95e68e00711bc4f74c304087fc3fb4b923df21f520e28017a86fc9df70470c3</citedby><cites>FETCH-LOGICAL-c338t-cb95e68e00711bc4f74c304087fc3fb4b923df21f520e28017a86fc9df70470c3</cites><orcidid>0000-0001-7905-528X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dadkhah, Ali</creatorcontrib><creatorcontrib>Moslehian, Mohammad Sal</creatorcontrib><title>Non-linear positive maps between C-algebras</title><title>Linear &amp; multilinear algebra</title><description>We present some properties of (not necessarily linear) positive maps between -algebras. We first extend the notion of Lieb functions to that of Lieb positive maps between -algebras. Then we give some basic properties and fundamental inequalities related to such maps. Next, we study n-positive maps ( ). We show that if for a unital 3-positive map between unital -algebras and some equality holds, then for all . In addition, we prove that for a certain class of unital positive maps between unital -algebras, the inequality holds for all and all positive elements if and only if . Furthermore, we show that if for some α in the unit ball of or in with , the equality holds, then Φ is additive on positive elements of . Moreover, we present a mild condition for a 6-positive map, which ensures its linearity.</description><subject>Algebra</subject><subject>Lieb map</subject><subject>Linearity</subject><subject>n-positive map</subject><subject>nonlinear map</subject><subject>superadditive</subject><issn>0308-1087</issn><issn>1563-5139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_QRhwKan35tFkdkrxBUU3ug6ZNJEp08mYTC39987QunV17-I758BHyDXCDEHDHXDQw6NmDFDPUArFpTohE5RzTiXy8pRMRoaO0Dm5yHkNAAK5nJDbt9jSpm69TUUXc93XP77Y2C4Xle933rfFgtrmy1fJ5ktyFmyT_dXxTsnn0-PH4oUu359fFw9L6jjXPXVVKf1cewCFWDkRlHAcxLAdHA-VqErGV4FhkAw804DK6nlw5SooEAocn5KbQ2-X4vfW596s4za1w6RhQiDjqFU5UPJAuRRzTj6YLtUbm_YGwYxezJ8XM3oxRy9D7v6Qq9sQ08buYmpWprf7JqaQbOvqbPj_Fb8CPmd9</recordid><startdate>20200802</startdate><enddate>20200802</enddate><creator>Dadkhah, Ali</creator><creator>Moslehian, Mohammad Sal</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7905-528X</orcidid></search><sort><creationdate>20200802</creationdate><title>Non-linear positive maps between C-algebras</title><author>Dadkhah, Ali ; Moslehian, Mohammad Sal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-cb95e68e00711bc4f74c304087fc3fb4b923df21f520e28017a86fc9df70470c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><topic>Lieb map</topic><topic>Linearity</topic><topic>n-positive map</topic><topic>nonlinear map</topic><topic>superadditive</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dadkhah, Ali</creatorcontrib><creatorcontrib>Moslehian, Mohammad Sal</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear &amp; multilinear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadkhah, Ali</au><au>Moslehian, Mohammad Sal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear positive maps between C-algebras</atitle><jtitle>Linear &amp; multilinear algebra</jtitle><date>2020-08-02</date><risdate>2020</risdate><volume>68</volume><issue>8</issue><spage>1501</spage><epage>1517</epage><pages>1501-1517</pages><issn>0308-1087</issn><eissn>1563-5139</eissn><abstract>We present some properties of (not necessarily linear) positive maps between -algebras. We first extend the notion of Lieb functions to that of Lieb positive maps between -algebras. Then we give some basic properties and fundamental inequalities related to such maps. Next, we study n-positive maps ( ). We show that if for a unital 3-positive map between unital -algebras and some equality holds, then for all . In addition, we prove that for a certain class of unital positive maps between unital -algebras, the inequality holds for all and all positive elements if and only if . Furthermore, we show that if for some α in the unit ball of or in with , the equality holds, then Φ is additive on positive elements of . Moreover, we present a mild condition for a 6-positive map, which ensures its linearity.</abstract><cop>Abingdon</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03081087.2018.1547357</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-7905-528X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0308-1087
ispartof Linear & multilinear algebra, 2020-08, Vol.68 (8), p.1501-1517
issn 0308-1087
1563-5139
language eng
recordid cdi_crossref_primary_10_1080_03081087_2018_1547357
source Taylor and Francis Science and Technology Collection
subjects Algebra
Lieb map
Linearity
n-positive map
nonlinear map
superadditive
title Non-linear positive maps between C-algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20positive%20maps%20between%20C-algebras&rft.jtitle=Linear%20&%20multilinear%20algebra&rft.au=Dadkhah,%20Ali&rft.date=2020-08-02&rft.volume=68&rft.issue=8&rft.spage=1501&rft.epage=1517&rft.pages=1501-1517&rft.issn=0308-1087&rft.eissn=1563-5139&rft_id=info:doi/10.1080/03081087.2018.1547357&rft_dat=%3Cproquest_cross%3E2441231879%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c338t-cb95e68e00711bc4f74c304087fc3fb4b923df21f520e28017a86fc9df70470c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2441231879&rft_id=info:pmid/&rfr_iscdi=true