Loading…

On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras

This work classifies three-dimensional simple evolution algebras over arbitrary fields. For this purpose, we use tools such as the associated directed graph, the moduli set, inductive limit group, Zariski topology and the dimension of the diagonal subspace. Explicitly, in the three-dimensional case,...

Full description

Saved in:
Bibliographic Details
Published in:Linear & multilinear algebra 2025-02, Vol.73 (3), p.507-524
Main Authors: Casado, Yolanda Cabrera, Barquero, Dolores Martín, González, Cándido Martín, Tocino, Alicia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c305t-4a25006303242b8765f27d00edadde71f9bd78516f09c51a96a356405528fe683
container_end_page 524
container_issue 3
container_start_page 507
container_title Linear & multilinear algebra
container_volume 73
creator Casado, Yolanda Cabrera
Barquero, Dolores Martín
González, Cándido Martín
Tocino, Alicia
description This work classifies three-dimensional simple evolution algebras over arbitrary fields. For this purpose, we use tools such as the associated directed graph, the moduli set, inductive limit group, Zariski topology and the dimension of the diagonal subspace. Explicitly, in the three-dimensional case, we construct some models $ _i\mathbf {III}_{\lambda _1,\ldots,\lambda _n}^{p,q} $ i III λ 1 , ... , λ n p , q of such algebras with $ 1\le i\le 4 $ 1 ≤ i ≤ 4 , $ \lambda _i\in {\mathbb {K}}^\times $ λ i ∈ K × , $ p,q\in {\mathbb {N}} $ p , q ∈ N , such that any algebra is isomorphic to one (and only one) of the given in the models and we further investigate the isomorphic question within each one. Moreover, we show how to construct simple evolution algebras of higher-order from known simple evolution algebras of smaller size.
doi_str_mv 10.1080/03081087.2024.2352452
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03081087_2024_2352452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_03081087_2024_2352452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-4a25006303242b8765f27d00edadde71f9bd78516f09c51a96a356405528fe683</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUj-gYSxHTvJDlTxkip1A2vLie1ilNiV7VL172nUdgmrGc3cexYHoXsCJYEGHoBBc1jqkgKtSso4rTi9QDPCBSs4Ye0lmk2ZYgpdo5uUvgGgIozPkF95nNy4GQw2P2HYZhc8VsPadFElHCzWbjQ-Tde8C1h5jfNXNKbEi-BTjts-O78-I6Z3MqP7k3iLrqwakrk7zTn6fHn-WLwVy9Xr--JpWfQMeC4qRTmAYMBoRbumFtzSWgMYrbQ2NbFtp-uGE2Gh7TlRrVCMiwo4p401omFzxI_cPoaUorFyE92o4l4SkJM0eZYmJ2nyJO3Qezz2nLchjmoX4qBlVvshRBuV712S7H_EL4f7dNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Casado, Yolanda Cabrera ; Barquero, Dolores Martín ; González, Cándido Martín ; Tocino, Alicia</creator><creatorcontrib>Casado, Yolanda Cabrera ; Barquero, Dolores Martín ; González, Cándido Martín ; Tocino, Alicia</creatorcontrib><description>This work classifies three-dimensional simple evolution algebras over arbitrary fields. For this purpose, we use tools such as the associated directed graph, the moduli set, inductive limit group, Zariski topology and the dimension of the diagonal subspace. Explicitly, in the three-dimensional case, we construct some models $ _i\mathbf {III}_{\lambda _1,\ldots,\lambda _n}^{p,q} $ i III λ 1 , ... , λ n p , q of such algebras with $ 1\le i\le 4 $ 1 ≤ i ≤ 4 , $ \lambda _i\in {\mathbb {K}}^\times $ λ i ∈ K × , $ p,q\in {\mathbb {N}} $ p , q ∈ N , such that any algebra is isomorphic to one (and only one) of the given in the models and we further investigate the isomorphic question within each one. Moreover, we show how to construct simple evolution algebras of higher-order from known simple evolution algebras of smaller size.</description><identifier>ISSN: 0308-1087</identifier><identifier>EISSN: 1563-5139</identifier><identifier>DOI: 10.1080/03081087.2024.2352452</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>directed graph ; Evolution algebra ; moduli set ; simple algebra ; strongly connected ; tensor product</subject><ispartof>Linear &amp; multilinear algebra, 2025-02, Vol.73 (3), p.507-524</ispartof><rights>2024 Informa UK Limited, trading as Taylor &amp; Francis Group 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-4a25006303242b8765f27d00edadde71f9bd78516f09c51a96a356405528fe683</cites><orcidid>0000-0003-4299-4392 ; 0000-0001-9045-939X ; 0000-0002-7210-1578 ; 0000-0003-2796-7417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Casado, Yolanda Cabrera</creatorcontrib><creatorcontrib>Barquero, Dolores Martín</creatorcontrib><creatorcontrib>González, Cándido Martín</creatorcontrib><creatorcontrib>Tocino, Alicia</creatorcontrib><title>On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras</title><title>Linear &amp; multilinear algebra</title><description>This work classifies three-dimensional simple evolution algebras over arbitrary fields. For this purpose, we use tools such as the associated directed graph, the moduli set, inductive limit group, Zariski topology and the dimension of the diagonal subspace. Explicitly, in the three-dimensional case, we construct some models $ _i\mathbf {III}_{\lambda _1,\ldots,\lambda _n}^{p,q} $ i III λ 1 , ... , λ n p , q of such algebras with $ 1\le i\le 4 $ 1 ≤ i ≤ 4 , $ \lambda _i\in {\mathbb {K}}^\times $ λ i ∈ K × , $ p,q\in {\mathbb {N}} $ p , q ∈ N , such that any algebra is isomorphic to one (and only one) of the given in the models and we further investigate the isomorphic question within each one. Moreover, we show how to construct simple evolution algebras of higher-order from known simple evolution algebras of smaller size.</description><subject>directed graph</subject><subject>Evolution algebra</subject><subject>moduli set</subject><subject>simple algebra</subject><subject>strongly connected</subject><subject>tensor product</subject><issn>0308-1087</issn><issn>1563-5139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUj-gYSxHTvJDlTxkip1A2vLie1ilNiV7VL172nUdgmrGc3cexYHoXsCJYEGHoBBc1jqkgKtSso4rTi9QDPCBSs4Ye0lmk2ZYgpdo5uUvgGgIozPkF95nNy4GQw2P2HYZhc8VsPadFElHCzWbjQ-Tde8C1h5jfNXNKbEi-BTjts-O78-I6Z3MqP7k3iLrqwakrk7zTn6fHn-WLwVy9Xr--JpWfQMeC4qRTmAYMBoRbumFtzSWgMYrbQ2NbFtp-uGE2Gh7TlRrVCMiwo4p401omFzxI_cPoaUorFyE92o4l4SkJM0eZYmJ2nyJO3Qezz2nLchjmoX4qBlVvshRBuV712S7H_EL4f7dNM</recordid><startdate>20250211</startdate><enddate>20250211</enddate><creator>Casado, Yolanda Cabrera</creator><creator>Barquero, Dolores Martín</creator><creator>González, Cándido Martín</creator><creator>Tocino, Alicia</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4299-4392</orcidid><orcidid>https://orcid.org/0000-0001-9045-939X</orcidid><orcidid>https://orcid.org/0000-0002-7210-1578</orcidid><orcidid>https://orcid.org/0000-0003-2796-7417</orcidid></search><sort><creationdate>20250211</creationdate><title>On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras</title><author>Casado, Yolanda Cabrera ; Barquero, Dolores Martín ; González, Cándido Martín ; Tocino, Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-4a25006303242b8765f27d00edadde71f9bd78516f09c51a96a356405528fe683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>directed graph</topic><topic>Evolution algebra</topic><topic>moduli set</topic><topic>simple algebra</topic><topic>strongly connected</topic><topic>tensor product</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casado, Yolanda Cabrera</creatorcontrib><creatorcontrib>Barquero, Dolores Martín</creatorcontrib><creatorcontrib>González, Cándido Martín</creatorcontrib><creatorcontrib>Tocino, Alicia</creatorcontrib><collection>CrossRef</collection><jtitle>Linear &amp; multilinear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casado, Yolanda Cabrera</au><au>Barquero, Dolores Martín</au><au>González, Cándido Martín</au><au>Tocino, Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras</atitle><jtitle>Linear &amp; multilinear algebra</jtitle><date>2025-02-11</date><risdate>2025</risdate><volume>73</volume><issue>3</issue><spage>507</spage><epage>524</epage><pages>507-524</pages><issn>0308-1087</issn><eissn>1563-5139</eissn><abstract>This work classifies three-dimensional simple evolution algebras over arbitrary fields. For this purpose, we use tools such as the associated directed graph, the moduli set, inductive limit group, Zariski topology and the dimension of the diagonal subspace. Explicitly, in the three-dimensional case, we construct some models $ _i\mathbf {III}_{\lambda _1,\ldots,\lambda _n}^{p,q} $ i III λ 1 , ... , λ n p , q of such algebras with $ 1\le i\le 4 $ 1 ≤ i ≤ 4 , $ \lambda _i\in {\mathbb {K}}^\times $ λ i ∈ K × , $ p,q\in {\mathbb {N}} $ p , q ∈ N , such that any algebra is isomorphic to one (and only one) of the given in the models and we further investigate the isomorphic question within each one. Moreover, we show how to construct simple evolution algebras of higher-order from known simple evolution algebras of smaller size.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/03081087.2024.2352452</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4299-4392</orcidid><orcidid>https://orcid.org/0000-0001-9045-939X</orcidid><orcidid>https://orcid.org/0000-0002-7210-1578</orcidid><orcidid>https://orcid.org/0000-0003-2796-7417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0308-1087
ispartof Linear & multilinear algebra, 2025-02, Vol.73 (3), p.507-524
issn 0308-1087
1563-5139
language eng
recordid cdi_crossref_primary_10_1080_03081087_2024_2352452
source Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)
subjects directed graph
Evolution algebra
moduli set
simple algebra
strongly connected
tensor product
title On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T01%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20simple%20evolution%20algebras%20of%20dimension%20two%20and%20three.%20Constructing%20simple%20and%20semisimple%20evolution%20algebras&rft.jtitle=Linear%20&%20multilinear%20algebra&rft.au=Casado,%20Yolanda%20Cabrera&rft.date=2025-02-11&rft.volume=73&rft.issue=3&rft.spage=507&rft.epage=524&rft.pages=507-524&rft.issn=0308-1087&rft.eissn=1563-5139&rft_id=info:doi/10.1080/03081087.2024.2352452&rft_dat=%3Ccrossref_infor%3E10_1080_03081087_2024_2352452%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-4a25006303242b8765f27d00edadde71f9bd78516f09c51a96a356405528fe683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true