Loading…
On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras
This work classifies three-dimensional simple evolution algebras over arbitrary fields. For this purpose, we use tools such as the associated directed graph, the moduli set, inductive limit group, Zariski topology and the dimension of the diagonal subspace. Explicitly, in the three-dimensional case,...
Saved in:
Published in: | Linear & multilinear algebra 2025-02, Vol.73 (3), p.507-524 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c305t-4a25006303242b8765f27d00edadde71f9bd78516f09c51a96a356405528fe683 |
container_end_page | 524 |
container_issue | 3 |
container_start_page | 507 |
container_title | Linear & multilinear algebra |
container_volume | 73 |
creator | Casado, Yolanda Cabrera Barquero, Dolores Martín González, Cándido Martín Tocino, Alicia |
description | This work classifies three-dimensional simple evolution algebras over arbitrary fields. For this purpose, we use tools such as the associated directed graph, the moduli set, inductive limit group, Zariski topology and the dimension of the diagonal subspace. Explicitly, in the three-dimensional case, we construct some models
$ _i\mathbf {III}_{\lambda _1,\ldots,\lambda _n}^{p,q} $
i
III
λ
1
,
...
,
λ
n
p
,
q
of such algebras with
$ 1\le i\le 4 $
1
≤
i
≤
4
,
$ \lambda _i\in {\mathbb {K}}^\times $
λ
i
∈
K
×
,
$ p,q\in {\mathbb {N}} $
p
,
q
∈
N
, such that any algebra is isomorphic to one (and only one) of the given in the models and we further investigate the isomorphic question within each one. Moreover, we show how to construct simple evolution algebras of higher-order from known simple evolution algebras of smaller size. |
doi_str_mv | 10.1080/03081087.2024.2352452 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03081087_2024_2352452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_03081087_2024_2352452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-4a25006303242b8765f27d00edadde71f9bd78516f09c51a96a356405528fe683</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUj-gYSxHTvJDlTxkip1A2vLie1ilNiV7VL172nUdgmrGc3cexYHoXsCJYEGHoBBc1jqkgKtSso4rTi9QDPCBSs4Ye0lmk2ZYgpdo5uUvgGgIozPkF95nNy4GQw2P2HYZhc8VsPadFElHCzWbjQ-Tde8C1h5jfNXNKbEi-BTjts-O78-I6Z3MqP7k3iLrqwakrk7zTn6fHn-WLwVy9Xr--JpWfQMeC4qRTmAYMBoRbumFtzSWgMYrbQ2NbFtp-uGE2Gh7TlRrVCMiwo4p401omFzxI_cPoaUorFyE92o4l4SkJM0eZYmJ2nyJO3Qezz2nLchjmoX4qBlVvshRBuV712S7H_EL4f7dNM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras</title><source>Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list)</source><creator>Casado, Yolanda Cabrera ; Barquero, Dolores Martín ; González, Cándido Martín ; Tocino, Alicia</creator><creatorcontrib>Casado, Yolanda Cabrera ; Barquero, Dolores Martín ; González, Cándido Martín ; Tocino, Alicia</creatorcontrib><description>This work classifies three-dimensional simple evolution algebras over arbitrary fields. For this purpose, we use tools such as the associated directed graph, the moduli set, inductive limit group, Zariski topology and the dimension of the diagonal subspace. Explicitly, in the three-dimensional case, we construct some models
$ _i\mathbf {III}_{\lambda _1,\ldots,\lambda _n}^{p,q} $
i
III
λ
1
,
...
,
λ
n
p
,
q
of such algebras with
$ 1\le i\le 4 $
1
≤
i
≤
4
,
$ \lambda _i\in {\mathbb {K}}^\times $
λ
i
∈
K
×
,
$ p,q\in {\mathbb {N}} $
p
,
q
∈
N
, such that any algebra is isomorphic to one (and only one) of the given in the models and we further investigate the isomorphic question within each one. Moreover, we show how to construct simple evolution algebras of higher-order from known simple evolution algebras of smaller size.</description><identifier>ISSN: 0308-1087</identifier><identifier>EISSN: 1563-5139</identifier><identifier>DOI: 10.1080/03081087.2024.2352452</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>directed graph ; Evolution algebra ; moduli set ; simple algebra ; strongly connected ; tensor product</subject><ispartof>Linear & multilinear algebra, 2025-02, Vol.73 (3), p.507-524</ispartof><rights>2024 Informa UK Limited, trading as Taylor & Francis Group 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c305t-4a25006303242b8765f27d00edadde71f9bd78516f09c51a96a356405528fe683</cites><orcidid>0000-0003-4299-4392 ; 0000-0001-9045-939X ; 0000-0002-7210-1578 ; 0000-0003-2796-7417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Casado, Yolanda Cabrera</creatorcontrib><creatorcontrib>Barquero, Dolores Martín</creatorcontrib><creatorcontrib>González, Cándido Martín</creatorcontrib><creatorcontrib>Tocino, Alicia</creatorcontrib><title>On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras</title><title>Linear & multilinear algebra</title><description>This work classifies three-dimensional simple evolution algebras over arbitrary fields. For this purpose, we use tools such as the associated directed graph, the moduli set, inductive limit group, Zariski topology and the dimension of the diagonal subspace. Explicitly, in the three-dimensional case, we construct some models
$ _i\mathbf {III}_{\lambda _1,\ldots,\lambda _n}^{p,q} $
i
III
λ
1
,
...
,
λ
n
p
,
q
of such algebras with
$ 1\le i\le 4 $
1
≤
i
≤
4
,
$ \lambda _i\in {\mathbb {K}}^\times $
λ
i
∈
K
×
,
$ p,q\in {\mathbb {N}} $
p
,
q
∈
N
, such that any algebra is isomorphic to one (and only one) of the given in the models and we further investigate the isomorphic question within each one. Moreover, we show how to construct simple evolution algebras of higher-order from known simple evolution algebras of smaller size.</description><subject>directed graph</subject><subject>Evolution algebra</subject><subject>moduli set</subject><subject>simple algebra</subject><subject>strongly connected</subject><subject>tensor product</subject><issn>0308-1087</issn><issn>1563-5139</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUj-gYSxHTvJDlTxkip1A2vLie1ilNiV7VL172nUdgmrGc3cexYHoXsCJYEGHoBBc1jqkgKtSso4rTi9QDPCBSs4Ye0lmk2ZYgpdo5uUvgGgIozPkF95nNy4GQw2P2HYZhc8VsPadFElHCzWbjQ-Tde8C1h5jfNXNKbEi-BTjts-O78-I6Z3MqP7k3iLrqwakrk7zTn6fHn-WLwVy9Xr--JpWfQMeC4qRTmAYMBoRbumFtzSWgMYrbQ2NbFtp-uGE2Gh7TlRrVCMiwo4p401omFzxI_cPoaUorFyE92o4l4SkJM0eZYmJ2nyJO3Qezz2nLchjmoX4qBlVvshRBuV712S7H_EL4f7dNM</recordid><startdate>20250211</startdate><enddate>20250211</enddate><creator>Casado, Yolanda Cabrera</creator><creator>Barquero, Dolores Martín</creator><creator>González, Cándido Martín</creator><creator>Tocino, Alicia</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4299-4392</orcidid><orcidid>https://orcid.org/0000-0001-9045-939X</orcidid><orcidid>https://orcid.org/0000-0002-7210-1578</orcidid><orcidid>https://orcid.org/0000-0003-2796-7417</orcidid></search><sort><creationdate>20250211</creationdate><title>On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras</title><author>Casado, Yolanda Cabrera ; Barquero, Dolores Martín ; González, Cándido Martín ; Tocino, Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-4a25006303242b8765f27d00edadde71f9bd78516f09c51a96a356405528fe683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>directed graph</topic><topic>Evolution algebra</topic><topic>moduli set</topic><topic>simple algebra</topic><topic>strongly connected</topic><topic>tensor product</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Casado, Yolanda Cabrera</creatorcontrib><creatorcontrib>Barquero, Dolores Martín</creatorcontrib><creatorcontrib>González, Cándido Martín</creatorcontrib><creatorcontrib>Tocino, Alicia</creatorcontrib><collection>CrossRef</collection><jtitle>Linear & multilinear algebra</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casado, Yolanda Cabrera</au><au>Barquero, Dolores Martín</au><au>González, Cándido Martín</au><au>Tocino, Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras</atitle><jtitle>Linear & multilinear algebra</jtitle><date>2025-02-11</date><risdate>2025</risdate><volume>73</volume><issue>3</issue><spage>507</spage><epage>524</epage><pages>507-524</pages><issn>0308-1087</issn><eissn>1563-5139</eissn><abstract>This work classifies three-dimensional simple evolution algebras over arbitrary fields. For this purpose, we use tools such as the associated directed graph, the moduli set, inductive limit group, Zariski topology and the dimension of the diagonal subspace. Explicitly, in the three-dimensional case, we construct some models
$ _i\mathbf {III}_{\lambda _1,\ldots,\lambda _n}^{p,q} $
i
III
λ
1
,
...
,
λ
n
p
,
q
of such algebras with
$ 1\le i\le 4 $
1
≤
i
≤
4
,
$ \lambda _i\in {\mathbb {K}}^\times $
λ
i
∈
K
×
,
$ p,q\in {\mathbb {N}} $
p
,
q
∈
N
, such that any algebra is isomorphic to one (and only one) of the given in the models and we further investigate the isomorphic question within each one. Moreover, we show how to construct simple evolution algebras of higher-order from known simple evolution algebras of smaller size.</abstract><pub>Taylor & Francis</pub><doi>10.1080/03081087.2024.2352452</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4299-4392</orcidid><orcidid>https://orcid.org/0000-0001-9045-939X</orcidid><orcidid>https://orcid.org/0000-0002-7210-1578</orcidid><orcidid>https://orcid.org/0000-0003-2796-7417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0308-1087 |
ispartof | Linear & multilinear algebra, 2025-02, Vol.73 (3), p.507-524 |
issn | 0308-1087 1563-5139 |
language | eng |
recordid | cdi_crossref_primary_10_1080_03081087_2024_2352452 |
source | Taylor and Francis:Jisc Collections:Taylor and Francis Read and Publish Agreement 2024-2025:Science and Technology Collection (Reading list) |
subjects | directed graph Evolution algebra moduli set simple algebra strongly connected tensor product |
title | On simple evolution algebras of dimension two and three. Constructing simple and semisimple evolution algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-24T01%3A24%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20simple%20evolution%20algebras%20of%20dimension%20two%20and%20three.%20Constructing%20simple%20and%20semisimple%20evolution%20algebras&rft.jtitle=Linear%20&%20multilinear%20algebra&rft.au=Casado,%20Yolanda%20Cabrera&rft.date=2025-02-11&rft.volume=73&rft.issue=3&rft.spage=507&rft.epage=524&rft.pages=507-524&rft.issn=0308-1087&rft.eissn=1563-5139&rft_id=info:doi/10.1080/03081087.2024.2352452&rft_dat=%3Ccrossref_infor%3E10_1080_03081087_2024_2352452%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c305t-4a25006303242b8765f27d00edadde71f9bd78516f09c51a96a356405528fe683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |