Loading…
Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map
We study the semiclassical microlocal structure of the Dirichlet-to-Neumann map for an arbitrary compact Riemannian manifold with a nonempty smooth boundary. We build a new, improved parametrix in the glancing region compaired with that one built in [Vodev, Commun. Math. Phys. 2015;336(3):1141-1166;...
Saved in:
Published in: | Communications in partial differential equations 2019-05, Vol.44 (5), p.367-396 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c419t-8b07f3c0a3aed9c31db5390f9ca4c5cf75cb1df5cdc274b2ebb6bf797e51f0b13 |
---|---|
cites | cdi_FETCH-LOGICAL-c419t-8b07f3c0a3aed9c31db5390f9ca4c5cf75cb1df5cdc274b2ebb6bf797e51f0b13 |
container_end_page | 396 |
container_issue | 5 |
container_start_page | 367 |
container_title | Communications in partial differential equations |
container_volume | 44 |
creator | Vodev, Georgi |
description | We study the semiclassical microlocal structure of the Dirichlet-to-Neumann map for an arbitrary compact Riemannian manifold with a nonempty smooth boundary. We build a new, improved parametrix in the glancing region compaired with that one built in [Vodev, Commun. Math. Phys. 2015;336(3):1141-1166; Vodev, Asymptotic Anal. 2018;106:147-168]. We also study the way in which the parametrix depends on the refraction index. As a consequence, we improve the transmission eigenvalue-free regions obtained in (Vodev, Asymptotic Anal. 2018;106:147-168) in the isotropic case when the restrictions of the refraction indices on the boundary coincide. |
doi_str_mv | 10.1080/03605302.2018.1547746 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03605302_2018_1547746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2221288875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-8b07f3c0a3aed9c31db5390f9ca4c5cf75cb1df5cdc274b2ebb6bf797e51f0b13</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwCUiRWLFI8SOukx1VebRSBZuythzHbl0ldnBcoH-PQwpLVqMZnbmaOQBcIzhBMId3kEwhJRBPMET5BNGMsWx6AkaIEpxmiJBTMOqZtIfOwUXX7WAkcZGNwHrZtN59qCpphReNCt58JcYmYauSTS2sNHaTeLUxziba-Z-5sUF5E5sH443c1iqkwaUvat8Ia5NGtJfgTIu6U1fHOgZvT4_r-SJdvT4v57NVKjNUhDQvIdNEQkGEqgpJUFVSUkBdSJFJKjWjskSVprKSmGUlVmU5LTUrmKJIwxKRMbgdcrei5q03jfAH7oThi9mK9zOIGIQM0Q8c2ZuBje--71UX-M7tvY3ncYwxwnmeMxopOlDSu67zSv_FIsh72fxXNu9l86PsuHc_7BkbLTXi0_m64kEcaue17zV2nPwf8Q2HpIYz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2221288875</pqid></control><display><type>article</type><title>Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map</title><source>Taylor and Francis Science and Technology Collection</source><creator>Vodev, Georgi</creator><creatorcontrib>Vodev, Georgi</creatorcontrib><description>We study the semiclassical microlocal structure of the Dirichlet-to-Neumann map for an arbitrary compact Riemannian manifold with a nonempty smooth boundary. We build a new, improved parametrix in the glancing region compaired with that one built in [Vodev, Commun. Math. Phys. 2015;336(3):1141-1166; Vodev, Asymptotic Anal. 2018;106:147-168]. We also study the way in which the parametrix depends on the refraction index. As a consequence, we improve the transmission eigenvalue-free regions obtained in (Vodev, Asymptotic Anal. 2018;106:147-168) in the isotropic case when the restrictions of the refraction indices on the boundary coincide.</description><identifier>ISSN: 0360-5302</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/03605302.2018.1547746</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Analysis of PDEs ; Asymptotic properties ; Dirichlet problem ; Dirichlet-to-Neumann map ; Eigenvalues ; glancing region ; Mathematics ; parametrix ; Refraction ; Riemann manifold ; Smooth boundaries ; transmission eigenvalues</subject><ispartof>Communications in partial differential equations, 2019-05, Vol.44 (5), p.367-396</ispartof><rights>2019 Taylor & Francis Group, LLC 2019</rights><rights>2019 Taylor & Francis Group, LLC</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-8b07f3c0a3aed9c31db5390f9ca4c5cf75cb1df5cdc274b2ebb6bf797e51f0b13</citedby><cites>FETCH-LOGICAL-c419t-8b07f3c0a3aed9c31db5390f9ca4c5cf75cb1df5cdc274b2ebb6bf797e51f0b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01700715$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vodev, Georgi</creatorcontrib><title>Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map</title><title>Communications in partial differential equations</title><description>We study the semiclassical microlocal structure of the Dirichlet-to-Neumann map for an arbitrary compact Riemannian manifold with a nonempty smooth boundary. We build a new, improved parametrix in the glancing region compaired with that one built in [Vodev, Commun. Math. Phys. 2015;336(3):1141-1166; Vodev, Asymptotic Anal. 2018;106:147-168]. We also study the way in which the parametrix depends on the refraction index. As a consequence, we improve the transmission eigenvalue-free regions obtained in (Vodev, Asymptotic Anal. 2018;106:147-168) in the isotropic case when the restrictions of the refraction indices on the boundary coincide.</description><subject>Analysis of PDEs</subject><subject>Asymptotic properties</subject><subject>Dirichlet problem</subject><subject>Dirichlet-to-Neumann map</subject><subject>Eigenvalues</subject><subject>glancing region</subject><subject>Mathematics</subject><subject>parametrix</subject><subject>Refraction</subject><subject>Riemann manifold</subject><subject>Smooth boundaries</subject><subject>transmission eigenvalues</subject><issn>0360-5302</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwCUiRWLFI8SOukx1VebRSBZuythzHbl0ldnBcoH-PQwpLVqMZnbmaOQBcIzhBMId3kEwhJRBPMET5BNGMsWx6AkaIEpxmiJBTMOqZtIfOwUXX7WAkcZGNwHrZtN59qCpphReNCt58JcYmYauSTS2sNHaTeLUxziba-Z-5sUF5E5sH443c1iqkwaUvat8Ia5NGtJfgTIu6U1fHOgZvT4_r-SJdvT4v57NVKjNUhDQvIdNEQkGEqgpJUFVSUkBdSJFJKjWjskSVprKSmGUlVmU5LTUrmKJIwxKRMbgdcrei5q03jfAH7oThi9mK9zOIGIQM0Q8c2ZuBje--71UX-M7tvY3ncYwxwnmeMxopOlDSu67zSv_FIsh72fxXNu9l86PsuHc_7BkbLTXi0_m64kEcaue17zV2nPwf8Q2HpIYz</recordid><startdate>20190504</startdate><enddate>20190504</enddate><creator>Vodev, Georgi</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20190504</creationdate><title>Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map</title><author>Vodev, Georgi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-8b07f3c0a3aed9c31db5390f9ca4c5cf75cb1df5cdc274b2ebb6bf797e51f0b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Analysis of PDEs</topic><topic>Asymptotic properties</topic><topic>Dirichlet problem</topic><topic>Dirichlet-to-Neumann map</topic><topic>Eigenvalues</topic><topic>glancing region</topic><topic>Mathematics</topic><topic>parametrix</topic><topic>Refraction</topic><topic>Riemann manifold</topic><topic>Smooth boundaries</topic><topic>transmission eigenvalues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vodev, Georgi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Communications in partial differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vodev, Georgi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map</atitle><jtitle>Communications in partial differential equations</jtitle><date>2019-05-04</date><risdate>2019</risdate><volume>44</volume><issue>5</issue><spage>367</spage><epage>396</epage><pages>367-396</pages><issn>0360-5302</issn><eissn>1532-4133</eissn><abstract>We study the semiclassical microlocal structure of the Dirichlet-to-Neumann map for an arbitrary compact Riemannian manifold with a nonempty smooth boundary. We build a new, improved parametrix in the glancing region compaired with that one built in [Vodev, Commun. Math. Phys. 2015;336(3):1141-1166; Vodev, Asymptotic Anal. 2018;106:147-168]. We also study the way in which the parametrix depends on the refraction index. As a consequence, we improve the transmission eigenvalue-free regions obtained in (Vodev, Asymptotic Anal. 2018;106:147-168) in the isotropic case when the restrictions of the refraction indices on the boundary coincide.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/03605302.2018.1547746</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5302 |
ispartof | Communications in partial differential equations, 2019-05, Vol.44 (5), p.367-396 |
issn | 0360-5302 1532-4133 |
language | eng |
recordid | cdi_crossref_primary_10_1080_03605302_2018_1547746 |
source | Taylor and Francis Science and Technology Collection |
subjects | Analysis of PDEs Asymptotic properties Dirichlet problem Dirichlet-to-Neumann map Eigenvalues glancing region Mathematics parametrix Refraction Riemann manifold Smooth boundaries transmission eigenvalues |
title | Improved parametrix in the glancing region for the interior Dirichlet-to-Neumann map |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T10%3A44%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20parametrix%20in%20the%20glancing%20region%20for%20the%20interior%20Dirichlet-to-Neumann%20map&rft.jtitle=Communications%20in%20partial%20differential%20equations&rft.au=Vodev,%20Georgi&rft.date=2019-05-04&rft.volume=44&rft.issue=5&rft.spage=367&rft.epage=396&rft.pages=367-396&rft.issn=0360-5302&rft.eissn=1532-4133&rft_id=info:doi/10.1080/03605302.2018.1547746&rft_dat=%3Cproquest_cross%3E2221288875%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-8b07f3c0a3aed9c31db5390f9ca4c5cf75cb1df5cdc274b2ebb6bf797e51f0b13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2221288875&rft_id=info:pmid/&rfr_iscdi=true |