Loading…

Exponential dispersion models for overdispersed zero-inflated count data

We consider two classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. These classes were considered in our earlier paper as models of overdispersed zero-inflated distributions. In...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Simulation and computation 2023-07, Vol.52 (7), p.3286-3304
Main Authors: Bar-Lev, Shaul K., Ridder, Ad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3
cites cdi_FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3
container_end_page 3304
container_issue 7
container_start_page 3286
container_title Communications in statistics. Simulation and computation
container_volume 52
creator Bar-Lev, Shaul K.
Ridder, Ad
description We consider two classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. These classes were considered in our earlier paper as models of overdispersed zero-inflated distributions. In this paper we analyze the application of these classes to fit count data having overdispersed and zero-inflated statistics. For this reason, we first elaborate on the computational aspects of the probability distributions, before we consider the data fitting with our models. We execute an extensive comparison with other statistical models that are recently proposed, on both real data sets, and simulated data sets. Our findings are that our framework is a flexible tool that gives excellent results in a wide range of cases. Moreover, specifically when the data characteristics show also large skewness and kurtosis our models perform best.
doi_str_mv 10.1080/03610918.2021.1934020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03610918_2021_1934020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839589110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwvDWfu8lNKdUKBS96DtnNBLZskzVJ1frr3aX16mkY5pl3mAehW4IXBEt8j1lFsCJyQTElC6IYxxSfoRkRjJaccHKOZhNTTtAlukppizFmkssZWq--h-DB5870he3SADF1wRe7YKFPhQuxCJ8QTxOwxQ_EUHbe9SaPXRv2PhfWZHONLpzpE9yc6hy9P63eluty8_r8snzclC2TIpe2MZwTgiugtm4aZ2qppHSmIkZCY2uBSQusFSAsp443laikUpKCrG1lwbA5ujvmDjF87CFlvQ376MeTmkqmhFRj-kiJI9XGkFIEp4fY7Uw8aIL1JE3_SdOTNH2SNu49HPfGD0Pcma8Qe6uzOfQhumh82yXN_o_4Bf2SdBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839589110</pqid></control><display><type>article</type><title>Exponential dispersion models for overdispersed zero-inflated count data</title><source>Taylor and Francis Science and Technology Collection</source><creator>Bar-Lev, Shaul K. ; Ridder, Ad</creator><creatorcontrib>Bar-Lev, Shaul K. ; Ridder, Ad</creatorcontrib><description>We consider two classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. These classes were considered in our earlier paper as models of overdispersed zero-inflated distributions. In this paper we analyze the application of these classes to fit count data having overdispersed and zero-inflated statistics. For this reason, we first elaborate on the computational aspects of the probability distributions, before we consider the data fitting with our models. We execute an extensive comparison with other statistical models that are recently proposed, on both real data sets, and simulated data sets. Our findings are that our framework is a flexible tool that gives excellent results in a wide range of cases. Moreover, specifically when the data characteristics show also large skewness and kurtosis our models perform best.</description><identifier>ISSN: 0361-0918</identifier><identifier>EISSN: 1532-4141</identifier><identifier>DOI: 10.1080/03610918.2021.1934020</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Count data analysis ; Datasets ; Dispersion ; Exponential dispersion models ; Fit models ; Kurtosis ; Overdispersion ; Parameterization ; Poisson-tweedie model ; Statistical analysis ; Statistical models ; Zero-inflation</subject><ispartof>Communications in statistics. Simulation and computation, 2023-07, Vol.52 (7), p.3286-3304</ispartof><rights>2021 The Author(s). Published with license by Taylor &amp; Francis Group, LLC 2021</rights><rights>2021 The Author(s). Published with license by Taylor &amp; Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3</citedby><cites>FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3</cites><orcidid>0000-0002-2414-0548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bar-Lev, Shaul K.</creatorcontrib><creatorcontrib>Ridder, Ad</creatorcontrib><title>Exponential dispersion models for overdispersed zero-inflated count data</title><title>Communications in statistics. Simulation and computation</title><description>We consider two classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. These classes were considered in our earlier paper as models of overdispersed zero-inflated distributions. In this paper we analyze the application of these classes to fit count data having overdispersed and zero-inflated statistics. For this reason, we first elaborate on the computational aspects of the probability distributions, before we consider the data fitting with our models. We execute an extensive comparison with other statistical models that are recently proposed, on both real data sets, and simulated data sets. Our findings are that our framework is a flexible tool that gives excellent results in a wide range of cases. Moreover, specifically when the data characteristics show also large skewness and kurtosis our models perform best.</description><subject>Count data analysis</subject><subject>Datasets</subject><subject>Dispersion</subject><subject>Exponential dispersion models</subject><subject>Fit models</subject><subject>Kurtosis</subject><subject>Overdispersion</subject><subject>Parameterization</subject><subject>Poisson-tweedie model</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Zero-inflation</subject><issn>0361-0918</issn><issn>1532-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_QVjwvDWfu8lNKdUKBS96DtnNBLZskzVJ1frr3aX16mkY5pl3mAehW4IXBEt8j1lFsCJyQTElC6IYxxSfoRkRjJaccHKOZhNTTtAlukppizFmkssZWq--h-DB5870he3SADF1wRe7YKFPhQuxCJ8QTxOwxQ_EUHbe9SaPXRv2PhfWZHONLpzpE9yc6hy9P63eluty8_r8snzclC2TIpe2MZwTgiugtm4aZ2qppHSmIkZCY2uBSQusFSAsp443laikUpKCrG1lwbA5ujvmDjF87CFlvQ376MeTmkqmhFRj-kiJI9XGkFIEp4fY7Uw8aIL1JE3_SdOTNH2SNu49HPfGD0Pcma8Qe6uzOfQhumh82yXN_o_4Bf2SdBs</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Bar-Lev, Shaul K.</creator><creator>Ridder, Ad</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2414-0548</orcidid></search><sort><creationdate>20230703</creationdate><title>Exponential dispersion models for overdispersed zero-inflated count data</title><author>Bar-Lev, Shaul K. ; Ridder, Ad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Count data analysis</topic><topic>Datasets</topic><topic>Dispersion</topic><topic>Exponential dispersion models</topic><topic>Fit models</topic><topic>Kurtosis</topic><topic>Overdispersion</topic><topic>Parameterization</topic><topic>Poisson-tweedie model</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Zero-inflation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bar-Lev, Shaul K.</creatorcontrib><creatorcontrib>Ridder, Ad</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Simulation and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bar-Lev, Shaul K.</au><au>Ridder, Ad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential dispersion models for overdispersed zero-inflated count data</atitle><jtitle>Communications in statistics. Simulation and computation</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>52</volume><issue>7</issue><spage>3286</spage><epage>3304</epage><pages>3286-3304</pages><issn>0361-0918</issn><eissn>1532-4141</eissn><abstract>We consider two classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. These classes were considered in our earlier paper as models of overdispersed zero-inflated distributions. In this paper we analyze the application of these classes to fit count data having overdispersed and zero-inflated statistics. For this reason, we first elaborate on the computational aspects of the probability distributions, before we consider the data fitting with our models. We execute an extensive comparison with other statistical models that are recently proposed, on both real data sets, and simulated data sets. Our findings are that our framework is a flexible tool that gives excellent results in a wide range of cases. Moreover, specifically when the data characteristics show also large skewness and kurtosis our models perform best.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03610918.2021.1934020</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2414-0548</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-0918
ispartof Communications in statistics. Simulation and computation, 2023-07, Vol.52 (7), p.3286-3304
issn 0361-0918
1532-4141
language eng
recordid cdi_crossref_primary_10_1080_03610918_2021_1934020
source Taylor and Francis Science and Technology Collection
subjects Count data analysis
Datasets
Dispersion
Exponential dispersion models
Fit models
Kurtosis
Overdispersion
Parameterization
Poisson-tweedie model
Statistical analysis
Statistical models
Zero-inflation
title Exponential dispersion models for overdispersed zero-inflated count data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20dispersion%20models%20for%20overdispersed%20zero-inflated%20count%20data&rft.jtitle=Communications%20in%20statistics.%20Simulation%20and%20computation&rft.au=Bar-Lev,%20Shaul%20K.&rft.date=2023-07-03&rft.volume=52&rft.issue=7&rft.spage=3286&rft.epage=3304&rft.pages=3286-3304&rft.issn=0361-0918&rft.eissn=1532-4141&rft_id=info:doi/10.1080/03610918.2021.1934020&rft_dat=%3Cproquest_cross%3E2839589110%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839589110&rft_id=info:pmid/&rfr_iscdi=true