Loading…
Exponential dispersion models for overdispersed zero-inflated count data
We consider two classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. These classes were considered in our earlier paper as models of overdispersed zero-inflated distributions. In...
Saved in:
Published in: | Communications in statistics. Simulation and computation 2023-07, Vol.52 (7), p.3286-3304 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3 |
---|---|
cites | cdi_FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3 |
container_end_page | 3304 |
container_issue | 7 |
container_start_page | 3286 |
container_title | Communications in statistics. Simulation and computation |
container_volume | 52 |
creator | Bar-Lev, Shaul K. Ridder, Ad |
description | We consider two classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. These classes were considered in our earlier paper as models of overdispersed zero-inflated distributions. In this paper we analyze the application of these classes to fit count data having overdispersed and zero-inflated statistics. For this reason, we first elaborate on the computational aspects of the probability distributions, before we consider the data fitting with our models. We execute an extensive comparison with other statistical models that are recently proposed, on both real data sets, and simulated data sets. Our findings are that our framework is a flexible tool that gives excellent results in a wide range of cases. Moreover, specifically when the data characteristics show also large skewness and kurtosis our models perform best. |
doi_str_mv | 10.1080/03610918.2021.1934020 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03610918_2021_1934020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2839589110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwvDWfu8lNKdUKBS96DtnNBLZskzVJ1frr3aX16mkY5pl3mAehW4IXBEt8j1lFsCJyQTElC6IYxxSfoRkRjJaccHKOZhNTTtAlukppizFmkssZWq--h-DB5870he3SADF1wRe7YKFPhQuxCJ8QTxOwxQ_EUHbe9SaPXRv2PhfWZHONLpzpE9yc6hy9P63eluty8_r8snzclC2TIpe2MZwTgiugtm4aZ2qppHSmIkZCY2uBSQusFSAsp443laikUpKCrG1lwbA5ujvmDjF87CFlvQ376MeTmkqmhFRj-kiJI9XGkFIEp4fY7Uw8aIL1JE3_SdOTNH2SNu49HPfGD0Pcma8Qe6uzOfQhumh82yXN_o_4Bf2SdBs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2839589110</pqid></control><display><type>article</type><title>Exponential dispersion models for overdispersed zero-inflated count data</title><source>Taylor and Francis Science and Technology Collection</source><creator>Bar-Lev, Shaul K. ; Ridder, Ad</creator><creatorcontrib>Bar-Lev, Shaul K. ; Ridder, Ad</creatorcontrib><description>We consider two classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. These classes were considered in our earlier paper as models of overdispersed zero-inflated distributions. In this paper we analyze the application of these classes to fit count data having overdispersed and zero-inflated statistics. For this reason, we first elaborate on the computational aspects of the probability distributions, before we consider the data fitting with our models. We execute an extensive comparison with other statistical models that are recently proposed, on both real data sets, and simulated data sets. Our findings are that our framework is a flexible tool that gives excellent results in a wide range of cases. Moreover, specifically when the data characteristics show also large skewness and kurtosis our models perform best.</description><identifier>ISSN: 0361-0918</identifier><identifier>EISSN: 1532-4141</identifier><identifier>DOI: 10.1080/03610918.2021.1934020</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Count data analysis ; Datasets ; Dispersion ; Exponential dispersion models ; Fit models ; Kurtosis ; Overdispersion ; Parameterization ; Poisson-tweedie model ; Statistical analysis ; Statistical models ; Zero-inflation</subject><ispartof>Communications in statistics. Simulation and computation, 2023-07, Vol.52 (7), p.3286-3304</ispartof><rights>2021 The Author(s). Published with license by Taylor & Francis Group, LLC 2021</rights><rights>2021 The Author(s). Published with license by Taylor & Francis Group, LLC. This work is licensed under the Creative Commons Attribution – Non-Commercial – No Derivatives License http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3</citedby><cites>FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3</cites><orcidid>0000-0002-2414-0548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bar-Lev, Shaul K.</creatorcontrib><creatorcontrib>Ridder, Ad</creatorcontrib><title>Exponential dispersion models for overdispersed zero-inflated count data</title><title>Communications in statistics. Simulation and computation</title><description>We consider two classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. These classes were considered in our earlier paper as models of overdispersed zero-inflated distributions. In this paper we analyze the application of these classes to fit count data having overdispersed and zero-inflated statistics. For this reason, we first elaborate on the computational aspects of the probability distributions, before we consider the data fitting with our models. We execute an extensive comparison with other statistical models that are recently proposed, on both real data sets, and simulated data sets. Our findings are that our framework is a flexible tool that gives excellent results in a wide range of cases. Moreover, specifically when the data characteristics show also large skewness and kurtosis our models perform best.</description><subject>Count data analysis</subject><subject>Datasets</subject><subject>Dispersion</subject><subject>Exponential dispersion models</subject><subject>Fit models</subject><subject>Kurtosis</subject><subject>Overdispersion</subject><subject>Parameterization</subject><subject>Poisson-tweedie model</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Zero-inflation</subject><issn>0361-0918</issn><issn>1532-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kE1LAzEQhoMoWKs_QVjwvDWfu8lNKdUKBS96DtnNBLZskzVJ1frr3aX16mkY5pl3mAehW4IXBEt8j1lFsCJyQTElC6IYxxSfoRkRjJaccHKOZhNTTtAlukppizFmkssZWq--h-DB5870he3SADF1wRe7YKFPhQuxCJ8QTxOwxQ_EUHbe9SaPXRv2PhfWZHONLpzpE9yc6hy9P63eluty8_r8snzclC2TIpe2MZwTgiugtm4aZ2qppHSmIkZCY2uBSQusFSAsp443laikUpKCrG1lwbA5ujvmDjF87CFlvQ376MeTmkqmhFRj-kiJI9XGkFIEp4fY7Uw8aIL1JE3_SdOTNH2SNu49HPfGD0Pcma8Qe6uzOfQhumh82yXN_o_4Bf2SdBs</recordid><startdate>20230703</startdate><enddate>20230703</enddate><creator>Bar-Lev, Shaul K.</creator><creator>Ridder, Ad</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>0YH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2414-0548</orcidid></search><sort><creationdate>20230703</creationdate><title>Exponential dispersion models for overdispersed zero-inflated count data</title><author>Bar-Lev, Shaul K. ; Ridder, Ad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Count data analysis</topic><topic>Datasets</topic><topic>Dispersion</topic><topic>Exponential dispersion models</topic><topic>Fit models</topic><topic>Kurtosis</topic><topic>Overdispersion</topic><topic>Parameterization</topic><topic>Poisson-tweedie model</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Zero-inflation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bar-Lev, Shaul K.</creatorcontrib><creatorcontrib>Ridder, Ad</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Simulation and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bar-Lev, Shaul K.</au><au>Ridder, Ad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential dispersion models for overdispersed zero-inflated count data</atitle><jtitle>Communications in statistics. Simulation and computation</jtitle><date>2023-07-03</date><risdate>2023</risdate><volume>52</volume><issue>7</issue><spage>3286</spage><epage>3304</epage><pages>3286-3304</pages><issn>0361-0918</issn><eissn>1532-4141</eissn><abstract>We consider two classes of exponential dispersion models of discrete probability distributions which are defined by specifying their variance functions in their mean value parameterization. These classes were considered in our earlier paper as models of overdispersed zero-inflated distributions. In this paper we analyze the application of these classes to fit count data having overdispersed and zero-inflated statistics. For this reason, we first elaborate on the computational aspects of the probability distributions, before we consider the data fitting with our models. We execute an extensive comparison with other statistical models that are recently proposed, on both real data sets, and simulated data sets. Our findings are that our framework is a flexible tool that gives excellent results in a wide range of cases. Moreover, specifically when the data characteristics show also large skewness and kurtosis our models perform best.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/03610918.2021.1934020</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-2414-0548</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0918 |
ispartof | Communications in statistics. Simulation and computation, 2023-07, Vol.52 (7), p.3286-3304 |
issn | 0361-0918 1532-4141 |
language | eng |
recordid | cdi_crossref_primary_10_1080_03610918_2021_1934020 |
source | Taylor and Francis Science and Technology Collection |
subjects | Count data analysis Datasets Dispersion Exponential dispersion models Fit models Kurtosis Overdispersion Parameterization Poisson-tweedie model Statistical analysis Statistical models Zero-inflation |
title | Exponential dispersion models for overdispersed zero-inflated count data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T21%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20dispersion%20models%20for%20overdispersed%20zero-inflated%20count%20data&rft.jtitle=Communications%20in%20statistics.%20Simulation%20and%20computation&rft.au=Bar-Lev,%20Shaul%20K.&rft.date=2023-07-03&rft.volume=52&rft.issue=7&rft.spage=3286&rft.epage=3304&rft.pages=3286-3304&rft.issn=0361-0918&rft.eissn=1532-4141&rft_id=info:doi/10.1080/03610918.2021.1934020&rft_dat=%3Cproquest_cross%3E2839589110%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c385t-dba441106e2d7bbfa78988fa61a8ebd7501ce3c5e5d42f4b65689982e87d6dea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2839589110&rft_id=info:pmid/&rfr_iscdi=true |