Loading…
Particle swarm optimization-based variable selection in Poisson regression analysis via information complexity-type criteria
Modeling of count responses is widely performed via Poisson regression models. This paper covers the problem of variable selection in Poisson regression analysis. The basic emphasis of this paper is to present the usefulness of information complexity-based criteria for Poisson regression. Particle s...
Saved in:
Published in: | Communications in statistics. Theory and methods 2018-11, Vol.47 (21), p.5298-5306 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Modeling of count responses is widely performed via Poisson regression models. This paper covers the problem of variable selection in Poisson regression analysis. The basic emphasis of this paper is to present the usefulness of information complexity-based criteria for Poisson regression. Particle swarm optimization (PSO) algorithm was adopted to minimize the information criteria. A real dataset example and two simulation studies were conducted for highly collinear and lowly correlated datasets. Results demonstrate the capability of information complexity-type criteria. According to the results, information complexity-type criteria can be effectively used instead of classical criteria in count data modeling via the PSO algorithm. |
---|---|
ISSN: | 0361-0926 1532-415X |
DOI: | 10.1080/03610926.2017.1390129 |