Loading…
Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions
Incorporating information from a prior survey is generally supposed to decrease the estimation risk of the present survey. This paper aims to show how the risk changes by incorporating the information of a prior survey through watching the first and the second-order terms of the asymptotic expansion...
Saved in:
Published in: | Communications in statistics. Theory and methods 2022-02, Vol.51 (3), p.701-723 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c258t-87fd94e7e137e79cb9a8e893f705b64e130c31886f754b87513089e91cc8ba773 |
container_end_page | 723 |
container_issue | 3 |
container_start_page | 701 |
container_title | Communications in statistics. Theory and methods |
container_volume | 51 |
creator | Yo, Sheena |
description | Incorporating information from a prior survey is generally supposed to decrease the estimation risk of the present survey. This paper aims to show how the risk changes by incorporating the information of a prior survey through watching the first and the second-order terms of the asymptotic expansion of the risk. We recognize that the prior information is of some help for risk reduction when we can acquire samples of a sufficient size for both surveys. Interestingly, when the sample size of the present survey is small, the use of the prior survey can increase the risk. In other words, blending information from both surveys can have a negative effect on the risk. Based on these observations, we give some suggestions on whether or not to use the results of the prior survey and the sample size to use in the surveys for a reliable estimation. |
doi_str_mv | 10.1080/03610926.2020.1753077 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03610926_2020_1753077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_03610926_2020_1753077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-87fd94e7e137e79cb9a8e893f705b64e130c31886f754b87513089e91cc8ba773</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoWEc_QcgPtCZN0yQ7h2F0hFE3Cu5CmiYSaZMhaZX-vS0zbl09ONx7eRwAbjEqMOLoDpEaI1HWRYnKGTFKEGNnIMOUlHmF6cc5yJZMvoQuwVVKXwhhyjjJwMs6Tf1hCE5DY63Tzng9wWDhc7EvtgUck_Of8BBdiDCN8dtM0HnYj93gfOid6mDr0hBdMw4u-HQNLqzqkrk53RV4f9i-bXb5_vXxabPe57qkfMg5s62oDDOYMMOEboTihgtiGaJNXc0YaYI5ry2jVcMZnQEXRmCteaMYIytAj7s6hpSisXJ-sVdxkhjJRYr8kyIXKfIkZe7dH3vO2xB79RNi18pBTV2INiqvXZLk_4lfsnVo1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Yo, Sheena</creator><creatorcontrib>Yo, Sheena</creatorcontrib><description>Incorporating information from a prior survey is generally supposed to decrease the estimation risk of the present survey. This paper aims to show how the risk changes by incorporating the information of a prior survey through watching the first and the second-order terms of the asymptotic expansion of the risk. We recognize that the prior information is of some help for risk reduction when we can acquire samples of a sufficient size for both surveys. Interestingly, when the sample size of the present survey is small, the use of the prior survey can increase the risk. In other words, blending information from both surveys can have a negative effect on the risk. Based on these observations, we give some suggestions on whether or not to use the results of the prior survey and the sample size to use in the surveys for a reliable estimation.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2020.1753077</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>asymptotic expansion ; estimation risk ; Kullback-Leibler divergence ; Primary 62F10 ; Secondary 62F12</subject><ispartof>Communications in statistics. Theory and methods, 2022-02, Vol.51 (3), p.701-723</ispartof><rights>2020 Taylor & Francis Group, LLC 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-87fd94e7e137e79cb9a8e893f705b64e130c31886f754b87513089e91cc8ba773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yo, Sheena</creatorcontrib><title>Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions</title><title>Communications in statistics. Theory and methods</title><description>Incorporating information from a prior survey is generally supposed to decrease the estimation risk of the present survey. This paper aims to show how the risk changes by incorporating the information of a prior survey through watching the first and the second-order terms of the asymptotic expansion of the risk. We recognize that the prior information is of some help for risk reduction when we can acquire samples of a sufficient size for both surveys. Interestingly, when the sample size of the present survey is small, the use of the prior survey can increase the risk. In other words, blending information from both surveys can have a negative effect on the risk. Based on these observations, we give some suggestions on whether or not to use the results of the prior survey and the sample size to use in the surveys for a reliable estimation.</description><subject>asymptotic expansion</subject><subject>estimation risk</subject><subject>Kullback-Leibler divergence</subject><subject>Primary 62F10</subject><subject>Secondary 62F12</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoWEc_QcgPtCZN0yQ7h2F0hFE3Cu5CmiYSaZMhaZX-vS0zbl09ONx7eRwAbjEqMOLoDpEaI1HWRYnKGTFKEGNnIMOUlHmF6cc5yJZMvoQuwVVKXwhhyjjJwMs6Tf1hCE5DY63Tzng9wWDhc7EvtgUck_Of8BBdiDCN8dtM0HnYj93gfOid6mDr0hBdMw4u-HQNLqzqkrk53RV4f9i-bXb5_vXxabPe57qkfMg5s62oDDOYMMOEboTihgtiGaJNXc0YaYI5ry2jVcMZnQEXRmCteaMYIytAj7s6hpSisXJ-sVdxkhjJRYr8kyIXKfIkZe7dH3vO2xB79RNi18pBTV2INiqvXZLk_4lfsnVo1Q</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Yo, Sheena</creator><general>Taylor & Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions</title><author>Yo, Sheena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-87fd94e7e137e79cb9a8e893f705b64e130c31886f754b87513089e91cc8ba773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>asymptotic expansion</topic><topic>estimation risk</topic><topic>Kullback-Leibler divergence</topic><topic>Primary 62F10</topic><topic>Secondary 62F12</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yo, Sheena</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yo, Sheena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>51</volume><issue>3</issue><spage>701</spage><epage>723</epage><pages>701-723</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>Incorporating information from a prior survey is generally supposed to decrease the estimation risk of the present survey. This paper aims to show how the risk changes by incorporating the information of a prior survey through watching the first and the second-order terms of the asymptotic expansion of the risk. We recognize that the prior information is of some help for risk reduction when we can acquire samples of a sufficient size for both surveys. Interestingly, when the sample size of the present survey is small, the use of the prior survey can increase the risk. In other words, blending information from both surveys can have a negative effect on the risk. Based on these observations, we give some suggestions on whether or not to use the results of the prior survey and the sample size to use in the surveys for a reliable estimation.</abstract><pub>Taylor & Francis</pub><doi>10.1080/03610926.2020.1753077</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 2022-02, Vol.51 (3), p.701-723 |
issn | 0361-0926 1532-415X |
language | eng |
recordid | cdi_crossref_primary_10_1080_03610926_2020_1753077 |
source | Taylor and Francis Science and Technology Collection |
subjects | asymptotic expansion estimation risk Kullback-Leibler divergence Primary 62F10 Secondary 62F12 |
title | Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptoic%20efficiency%20of%20M.L.E.%20using%20prior%20survey%20in%20multinomial%20distributions&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Yo,%20Sheena&rft.date=2022-02-01&rft.volume=51&rft.issue=3&rft.spage=701&rft.epage=723&rft.pages=701-723&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2020.1753077&rft_dat=%3Ccrossref_infor%3E10_1080_03610926_2020_1753077%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-87fd94e7e137e79cb9a8e893f705b64e130c31886f754b87513089e91cc8ba773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |