Loading…

Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions

Incorporating information from a prior survey is generally supposed to decrease the estimation risk of the present survey. This paper aims to show how the risk changes by incorporating the information of a prior survey through watching the first and the second-order terms of the asymptotic expansion...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2022-02, Vol.51 (3), p.701-723
Main Author: Yo, Sheena
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c258t-87fd94e7e137e79cb9a8e893f705b64e130c31886f754b87513089e91cc8ba773
container_end_page 723
container_issue 3
container_start_page 701
container_title Communications in statistics. Theory and methods
container_volume 51
creator Yo, Sheena
description Incorporating information from a prior survey is generally supposed to decrease the estimation risk of the present survey. This paper aims to show how the risk changes by incorporating the information of a prior survey through watching the first and the second-order terms of the asymptotic expansion of the risk. We recognize that the prior information is of some help for risk reduction when we can acquire samples of a sufficient size for both surveys. Interestingly, when the sample size of the present survey is small, the use of the prior survey can increase the risk. In other words, blending information from both surveys can have a negative effect on the risk. Based on these observations, we give some suggestions on whether or not to use the results of the prior survey and the sample size to use in the surveys for a reliable estimation.
doi_str_mv 10.1080/03610926.2020.1753077
format article
fullrecord <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03610926_2020_1753077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_03610926_2020_1753077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-87fd94e7e137e79cb9a8e893f705b64e130c31886f754b87513089e91cc8ba773</originalsourceid><addsrcrecordid>eNp9kMFKxDAURYMoWEc_QcgPtCZN0yQ7h2F0hFE3Cu5CmiYSaZMhaZX-vS0zbl09ONx7eRwAbjEqMOLoDpEaI1HWRYnKGTFKEGNnIMOUlHmF6cc5yJZMvoQuwVVKXwhhyjjJwMs6Tf1hCE5DY63Tzng9wWDhc7EvtgUck_Of8BBdiDCN8dtM0HnYj93gfOid6mDr0hBdMw4u-HQNLqzqkrk53RV4f9i-bXb5_vXxabPe57qkfMg5s62oDDOYMMOEboTihgtiGaJNXc0YaYI5ry2jVcMZnQEXRmCteaMYIytAj7s6hpSisXJ-sVdxkhjJRYr8kyIXKfIkZe7dH3vO2xB79RNi18pBTV2INiqvXZLk_4lfsnVo1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions</title><source>Taylor and Francis Science and Technology Collection</source><creator>Yo, Sheena</creator><creatorcontrib>Yo, Sheena</creatorcontrib><description>Incorporating information from a prior survey is generally supposed to decrease the estimation risk of the present survey. This paper aims to show how the risk changes by incorporating the information of a prior survey through watching the first and the second-order terms of the asymptotic expansion of the risk. We recognize that the prior information is of some help for risk reduction when we can acquire samples of a sufficient size for both surveys. Interestingly, when the sample size of the present survey is small, the use of the prior survey can increase the risk. In other words, blending information from both surveys can have a negative effect on the risk. Based on these observations, we give some suggestions on whether or not to use the results of the prior survey and the sample size to use in the surveys for a reliable estimation.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2020.1753077</identifier><language>eng</language><publisher>Taylor &amp; Francis</publisher><subject>asymptotic expansion ; estimation risk ; Kullback-Leibler divergence ; Primary 62F10 ; Secondary 62F12</subject><ispartof>Communications in statistics. Theory and methods, 2022-02, Vol.51 (3), p.701-723</ispartof><rights>2020 Taylor &amp; Francis Group, LLC 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c258t-87fd94e7e137e79cb9a8e893f705b64e130c31886f754b87513089e91cc8ba773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yo, Sheena</creatorcontrib><title>Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions</title><title>Communications in statistics. Theory and methods</title><description>Incorporating information from a prior survey is generally supposed to decrease the estimation risk of the present survey. This paper aims to show how the risk changes by incorporating the information of a prior survey through watching the first and the second-order terms of the asymptotic expansion of the risk. We recognize that the prior information is of some help for risk reduction when we can acquire samples of a sufficient size for both surveys. Interestingly, when the sample size of the present survey is small, the use of the prior survey can increase the risk. In other words, blending information from both surveys can have a negative effect on the risk. Based on these observations, we give some suggestions on whether or not to use the results of the prior survey and the sample size to use in the surveys for a reliable estimation.</description><subject>asymptotic expansion</subject><subject>estimation risk</subject><subject>Kullback-Leibler divergence</subject><subject>Primary 62F10</subject><subject>Secondary 62F12</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAURYMoWEc_QcgPtCZN0yQ7h2F0hFE3Cu5CmiYSaZMhaZX-vS0zbl09ONx7eRwAbjEqMOLoDpEaI1HWRYnKGTFKEGNnIMOUlHmF6cc5yJZMvoQuwVVKXwhhyjjJwMs6Tf1hCE5DY63Tzng9wWDhc7EvtgUck_Of8BBdiDCN8dtM0HnYj93gfOid6mDr0hBdMw4u-HQNLqzqkrk53RV4f9i-bXb5_vXxabPe57qkfMg5s62oDDOYMMOEboTihgtiGaJNXc0YaYI5ry2jVcMZnQEXRmCteaMYIytAj7s6hpSisXJ-sVdxkhjJRYr8kyIXKfIkZe7dH3vO2xB79RNi18pBTV2INiqvXZLk_4lfsnVo1Q</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Yo, Sheena</creator><general>Taylor &amp; Francis</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220201</creationdate><title>Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions</title><author>Yo, Sheena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-87fd94e7e137e79cb9a8e893f705b64e130c31886f754b87513089e91cc8ba773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>asymptotic expansion</topic><topic>estimation risk</topic><topic>Kullback-Leibler divergence</topic><topic>Primary 62F10</topic><topic>Secondary 62F12</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yo, Sheena</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yo, Sheena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>51</volume><issue>3</issue><spage>701</spage><epage>723</epage><pages>701-723</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>Incorporating information from a prior survey is generally supposed to decrease the estimation risk of the present survey. This paper aims to show how the risk changes by incorporating the information of a prior survey through watching the first and the second-order terms of the asymptotic expansion of the risk. We recognize that the prior information is of some help for risk reduction when we can acquire samples of a sufficient size for both surveys. Interestingly, when the sample size of the present survey is small, the use of the prior survey can increase the risk. In other words, blending information from both surveys can have a negative effect on the risk. Based on these observations, we give some suggestions on whether or not to use the results of the prior survey and the sample size to use in the surveys for a reliable estimation.</abstract><pub>Taylor &amp; Francis</pub><doi>10.1080/03610926.2020.1753077</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2022-02, Vol.51 (3), p.701-723
issn 0361-0926
1532-415X
language eng
recordid cdi_crossref_primary_10_1080_03610926_2020_1753077
source Taylor and Francis Science and Technology Collection
subjects asymptotic expansion
estimation risk
Kullback-Leibler divergence
Primary 62F10
Secondary 62F12
title Asymptoic efficiency of M.L.E. using prior survey in multinomial distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptoic%20efficiency%20of%20M.L.E.%20using%20prior%20survey%20in%20multinomial%20distributions&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Yo,%20Sheena&rft.date=2022-02-01&rft.volume=51&rft.issue=3&rft.spage=701&rft.epage=723&rft.pages=701-723&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2020.1753077&rft_dat=%3Ccrossref_infor%3E10_1080_03610926_2020_1753077%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c258t-87fd94e7e137e79cb9a8e893f705b64e130c31886f754b87513089e91cc8ba773%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true