Loading…
Uniform moment bounds for the standard estimators in the Cox proportional hazard model
We consider the Cox regression model and show that the regression parameter estimator and the Breslow estimator for the cumulative hazard have uniformly bounded moments of any order if we restrict to a sequence of events with probability converging to one. These results are needed, for example, when...
Saved in:
Published in: | Communications in statistics. Theory and methods 2022-11, Vol.51 (21), p.7452-7464 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-862520c4eeb6f9ea231d5d2d0ebd7556af8604aeb46ae94f1568a61fcd051cff3 |
container_end_page | 7464 |
container_issue | 21 |
container_start_page | 7452 |
container_title | Communications in statistics. Theory and methods |
container_volume | 51 |
creator | Durot, Cécile Musta, Eni |
description | We consider the Cox regression model and show that the regression parameter estimator and the Breslow estimator for the cumulative hazard have uniformly bounded moments of any order if we restrict to a sequence of events with probability converging to one. These results are needed, for example, when studying global errors of shape restricted estimators of the baseline hazard function. |
doi_str_mv | 10.1080/03610926.2021.1873376 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03610926_2021_1873376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713140707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-862520c4eeb6f9ea231d5d2d0ebd7556af8604aeb46ae94f1568a61fcd051cff3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKuPIARcuZian0kys7MUtULBjRV3ITNJ6JSZpCapWp_eGVtdurpw73cO5x4ALjGaYFSgG0Q5RiXhE4IInuBCUCr4ERhhRkmWY_Z6DEYDkw3QKTiLcY0QZqKgI_CydI31oYOd74xLsPJbpyPsVzCtDIxJOa2ChiamplPJhwgb93Oa-U-4CX7jQ2q8Uy1cqa-B7Lw27Tk4saqN5uIwx2B5f_c8m2eLp4fH2XSR1ZSLlBWcMILq3JiK29IoQrFmmmhkKi0Y48oWHOXKVDlXpswtZrxQHNtaI4Zra-kYXO99V6qVm9BHDDvpVSPn04UcdogOmrJ8xz17tWf71G_b_iG59tvQJ4-SCExxjgQSPcX2VB18jMHYP1uM5FC3_K1bDnXLQ9297nava9zQp_rwodUyqV3rgw3K1U2U9H-Lb-e9htk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713140707</pqid></control><display><type>article</type><title>Uniform moment bounds for the standard estimators in the Cox proportional hazard model</title><source>Taylor and Francis Science and Technology Collection</source><creator>Durot, Cécile ; Musta, Eni</creator><creatorcontrib>Durot, Cécile ; Musta, Eni</creatorcontrib><description>We consider the Cox regression model and show that the regression parameter estimator and the Breslow estimator for the cumulative hazard have uniformly bounded moments of any order if we restrict to a sequence of events with probability converging to one. These results are needed, for example, when studying global errors of shape restricted estimators of the baseline hazard function.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2021.1873376</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Breslow estimator ; Cox regression model ; Estimators ; maximum partial likelihood estimator ; Parameter estimation ; Regression models ; Statistical analysis ; Statistical models ; Statistics ; Statistics Theory ; uniformly bounded moments</subject><ispartof>Communications in statistics. Theory and methods, 2022-11, Vol.51 (21), p.7452-7464</ispartof><rights>2021 Taylor & Francis Group, LLC 2021</rights><rights>2021 Taylor & Francis Group, LLC</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-862520c4eeb6f9ea231d5d2d0ebd7556af8604aeb46ae94f1568a61fcd051cff3</cites><orcidid>0000-0003-3356-4307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03156899$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Durot, Cécile</creatorcontrib><creatorcontrib>Musta, Eni</creatorcontrib><title>Uniform moment bounds for the standard estimators in the Cox proportional hazard model</title><title>Communications in statistics. Theory and methods</title><description>We consider the Cox regression model and show that the regression parameter estimator and the Breslow estimator for the cumulative hazard have uniformly bounded moments of any order if we restrict to a sequence of events with probability converging to one. These results are needed, for example, when studying global errors of shape restricted estimators of the baseline hazard function.</description><subject>Breslow estimator</subject><subject>Cox regression model</subject><subject>Estimators</subject><subject>maximum partial likelihood estimator</subject><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Statistics Theory</subject><subject>uniformly bounded moments</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKuPIARcuZian0kys7MUtULBjRV3ITNJ6JSZpCapWp_eGVtdurpw73cO5x4ALjGaYFSgG0Q5RiXhE4IInuBCUCr4ERhhRkmWY_Z6DEYDkw3QKTiLcY0QZqKgI_CydI31oYOd74xLsPJbpyPsVzCtDIxJOa2ChiamplPJhwgb93Oa-U-4CX7jQ2q8Uy1cqa-B7Lw27Tk4saqN5uIwx2B5f_c8m2eLp4fH2XSR1ZSLlBWcMILq3JiK29IoQrFmmmhkKi0Y48oWHOXKVDlXpswtZrxQHNtaI4Zra-kYXO99V6qVm9BHDDvpVSPn04UcdogOmrJ8xz17tWf71G_b_iG59tvQJ4-SCExxjgQSPcX2VB18jMHYP1uM5FC3_K1bDnXLQ9297nava9zQp_rwodUyqV3rgw3K1U2U9H-Lb-e9htk</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Durot, Cécile</creator><creator>Musta, Eni</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3356-4307</orcidid></search><sort><creationdate>20221102</creationdate><title>Uniform moment bounds for the standard estimators in the Cox proportional hazard model</title><author>Durot, Cécile ; Musta, Eni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-862520c4eeb6f9ea231d5d2d0ebd7556af8604aeb46ae94f1568a61fcd051cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Breslow estimator</topic><topic>Cox regression model</topic><topic>Estimators</topic><topic>maximum partial likelihood estimator</topic><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Statistics Theory</topic><topic>uniformly bounded moments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durot, Cécile</creatorcontrib><creatorcontrib>Musta, Eni</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durot, Cécile</au><au>Musta, Eni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform moment bounds for the standard estimators in the Cox proportional hazard model</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>51</volume><issue>21</issue><spage>7452</spage><epage>7464</epage><pages>7452-7464</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>We consider the Cox regression model and show that the regression parameter estimator and the Breslow estimator for the cumulative hazard have uniformly bounded moments of any order if we restrict to a sequence of events with probability converging to one. These results are needed, for example, when studying global errors of shape restricted estimators of the baseline hazard function.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/03610926.2021.1873376</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3356-4307</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 2022-11, Vol.51 (21), p.7452-7464 |
issn | 0361-0926 1532-415X |
language | eng |
recordid | cdi_crossref_primary_10_1080_03610926_2021_1873376 |
source | Taylor and Francis Science and Technology Collection |
subjects | Breslow estimator Cox regression model Estimators maximum partial likelihood estimator Parameter estimation Regression models Statistical analysis Statistical models Statistics Statistics Theory uniformly bounded moments |
title | Uniform moment bounds for the standard estimators in the Cox proportional hazard model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20moment%20bounds%20for%20the%20standard%20estimators%20in%20the%20Cox%20proportional%20hazard%20model&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Durot,%20C%C3%A9cile&rft.date=2022-11-02&rft.volume=51&rft.issue=21&rft.spage=7452&rft.epage=7464&rft.pages=7452-7464&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2021.1873376&rft_dat=%3Cproquest_cross%3E2713140707%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-862520c4eeb6f9ea231d5d2d0ebd7556af8604aeb46ae94f1568a61fcd051cff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2713140707&rft_id=info:pmid/&rfr_iscdi=true |