Loading…

Uniform moment bounds for the standard estimators in the Cox proportional hazard model

We consider the Cox regression model and show that the regression parameter estimator and the Breslow estimator for the cumulative hazard have uniformly bounded moments of any order if we restrict to a sequence of events with probability converging to one. These results are needed, for example, when...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2022-11, Vol.51 (21), p.7452-7464
Main Authors: Durot, Cécile, Musta, Eni
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c367t-862520c4eeb6f9ea231d5d2d0ebd7556af8604aeb46ae94f1568a61fcd051cff3
container_end_page 7464
container_issue 21
container_start_page 7452
container_title Communications in statistics. Theory and methods
container_volume 51
creator Durot, Cécile
Musta, Eni
description We consider the Cox regression model and show that the regression parameter estimator and the Breslow estimator for the cumulative hazard have uniformly bounded moments of any order if we restrict to a sequence of events with probability converging to one. These results are needed, for example, when studying global errors of shape restricted estimators of the baseline hazard function.
doi_str_mv 10.1080/03610926.2021.1873376
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1080_03610926_2021_1873376</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713140707</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-862520c4eeb6f9ea231d5d2d0ebd7556af8604aeb46ae94f1568a61fcd051cff3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKuPIARcuZian0kys7MUtULBjRV3ITNJ6JSZpCapWp_eGVtdurpw73cO5x4ALjGaYFSgG0Q5RiXhE4IInuBCUCr4ERhhRkmWY_Z6DEYDkw3QKTiLcY0QZqKgI_CydI31oYOd74xLsPJbpyPsVzCtDIxJOa2ChiamplPJhwgb93Oa-U-4CX7jQ2q8Uy1cqa-B7Lw27Tk4saqN5uIwx2B5f_c8m2eLp4fH2XSR1ZSLlBWcMILq3JiK29IoQrFmmmhkKi0Y48oWHOXKVDlXpswtZrxQHNtaI4Zra-kYXO99V6qVm9BHDDvpVSPn04UcdogOmrJ8xz17tWf71G_b_iG59tvQJ4-SCExxjgQSPcX2VB18jMHYP1uM5FC3_K1bDnXLQ9297nava9zQp_rwodUyqV3rgw3K1U2U9H-Lb-e9htk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713140707</pqid></control><display><type>article</type><title>Uniform moment bounds for the standard estimators in the Cox proportional hazard model</title><source>Taylor and Francis Science and Technology Collection</source><creator>Durot, Cécile ; Musta, Eni</creator><creatorcontrib>Durot, Cécile ; Musta, Eni</creatorcontrib><description>We consider the Cox regression model and show that the regression parameter estimator and the Breslow estimator for the cumulative hazard have uniformly bounded moments of any order if we restrict to a sequence of events with probability converging to one. These results are needed, for example, when studying global errors of shape restricted estimators of the baseline hazard function.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2021.1873376</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Breslow estimator ; Cox regression model ; Estimators ; maximum partial likelihood estimator ; Parameter estimation ; Regression models ; Statistical analysis ; Statistical models ; Statistics ; Statistics Theory ; uniformly bounded moments</subject><ispartof>Communications in statistics. Theory and methods, 2022-11, Vol.51 (21), p.7452-7464</ispartof><rights>2021 Taylor &amp; Francis Group, LLC 2021</rights><rights>2021 Taylor &amp; Francis Group, LLC</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c367t-862520c4eeb6f9ea231d5d2d0ebd7556af8604aeb46ae94f1568a61fcd051cff3</cites><orcidid>0000-0003-3356-4307</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03156899$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Durot, Cécile</creatorcontrib><creatorcontrib>Musta, Eni</creatorcontrib><title>Uniform moment bounds for the standard estimators in the Cox proportional hazard model</title><title>Communications in statistics. Theory and methods</title><description>We consider the Cox regression model and show that the regression parameter estimator and the Breslow estimator for the cumulative hazard have uniformly bounded moments of any order if we restrict to a sequence of events with probability converging to one. These results are needed, for example, when studying global errors of shape restricted estimators of the baseline hazard function.</description><subject>Breslow estimator</subject><subject>Cox regression model</subject><subject>Estimators</subject><subject>maximum partial likelihood estimator</subject><subject>Parameter estimation</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Statistics</subject><subject>Statistics Theory</subject><subject>uniformly bounded moments</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKuPIARcuZian0kys7MUtULBjRV3ITNJ6JSZpCapWp_eGVtdurpw73cO5x4ALjGaYFSgG0Q5RiXhE4IInuBCUCr4ERhhRkmWY_Z6DEYDkw3QKTiLcY0QZqKgI_CydI31oYOd74xLsPJbpyPsVzCtDIxJOa2ChiamplPJhwgb93Oa-U-4CX7jQ2q8Uy1cqa-B7Lw27Tk4saqN5uIwx2B5f_c8m2eLp4fH2XSR1ZSLlBWcMILq3JiK29IoQrFmmmhkKi0Y48oWHOXKVDlXpswtZrxQHNtaI4Zra-kYXO99V6qVm9BHDDvpVSPn04UcdogOmrJ8xz17tWf71G_b_iG59tvQJ4-SCExxjgQSPcX2VB18jMHYP1uM5FC3_K1bDnXLQ9297nava9zQp_rwodUyqV3rgw3K1U2U9H-Lb-e9htk</recordid><startdate>20221102</startdate><enddate>20221102</enddate><creator>Durot, Cécile</creator><creator>Musta, Eni</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3356-4307</orcidid></search><sort><creationdate>20221102</creationdate><title>Uniform moment bounds for the standard estimators in the Cox proportional hazard model</title><author>Durot, Cécile ; Musta, Eni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-862520c4eeb6f9ea231d5d2d0ebd7556af8604aeb46ae94f1568a61fcd051cff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Breslow estimator</topic><topic>Cox regression model</topic><topic>Estimators</topic><topic>maximum partial likelihood estimator</topic><topic>Parameter estimation</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Statistics</topic><topic>Statistics Theory</topic><topic>uniformly bounded moments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Durot, Cécile</creatorcontrib><creatorcontrib>Musta, Eni</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Durot, Cécile</au><au>Musta, Eni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uniform moment bounds for the standard estimators in the Cox proportional hazard model</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2022-11-02</date><risdate>2022</risdate><volume>51</volume><issue>21</issue><spage>7452</spage><epage>7464</epage><pages>7452-7464</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>We consider the Cox regression model and show that the regression parameter estimator and the Breslow estimator for the cumulative hazard have uniformly bounded moments of any order if we restrict to a sequence of events with probability converging to one. These results are needed, for example, when studying global errors of shape restricted estimators of the baseline hazard function.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03610926.2021.1873376</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3356-4307</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2022-11, Vol.51 (21), p.7452-7464
issn 0361-0926
1532-415X
language eng
recordid cdi_crossref_primary_10_1080_03610926_2021_1873376
source Taylor and Francis Science and Technology Collection
subjects Breslow estimator
Cox regression model
Estimators
maximum partial likelihood estimator
Parameter estimation
Regression models
Statistical analysis
Statistical models
Statistics
Statistics Theory
uniformly bounded moments
title Uniform moment bounds for the standard estimators in the Cox proportional hazard model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A09%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uniform%20moment%20bounds%20for%20the%20standard%20estimators%20in%20the%20Cox%20proportional%20hazard%20model&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Durot,%20C%C3%A9cile&rft.date=2022-11-02&rft.volume=51&rft.issue=21&rft.spage=7452&rft.epage=7464&rft.pages=7452-7464&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2021.1873376&rft_dat=%3Cproquest_cross%3E2713140707%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-862520c4eeb6f9ea231d5d2d0ebd7556af8604aeb46ae94f1568a61fcd051cff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2713140707&rft_id=info:pmid/&rfr_iscdi=true