Loading…
Hb Amsterdam-A1 [α32(B13)Met→Ile; HBA1: c.99G>A]: A Hyperunstable Variant Due to a New Mutation on the α1 Gene
Patients with hyperunstable α chain variants usually present with a thalassemic, rather than hemolytic, phenotype. Electrophoretic, ion exchange and reverse phase separations usually fail to detect the variant and when DNA sequencing identifies a 'silent' substitution it is usually presume...
Saved in:
Published in: | Hemoglobin 2017-03, Vol.41 (2), p.140-143 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Patients with hyperunstable α chain variants usually present with a thalassemic, rather than hemolytic, phenotype. Electrophoretic, ion exchange and reverse phase separations usually fail to detect the variant and when DNA sequencing identifies a 'silent' substitution it is usually presumed to be hyperunstable. We report the identification of such a variant, α32(B13)Met→Ile; HBA1: c.99G>A, arising from a new mutation on the α1 gene. The hemoglobin (Hb) was unequivocally detected by the isopropanol stability test and confirmed as hyperunstable by mass spectrometry (MS) of the precipitate and lysate, which showed proportions of 55% and 2.5% of α chains, respectively. The instability appears to be driven by perturbation of globin-heme, and possibly α1β1 subunit, interactions. |
---|---|
ISSN: | 0363-0269 1532-432X |
DOI: | 10.1080/03630269.2017.1311911 |