Loading…

Cloud Microphysics in Global Cloud Resolving Models

Global cloud resolving models (GCRMs) are a new type of general circulation model that explicitly calculates the growth of cloud systems with fine spatial resolutions and more than 10 GCRMs have been developed at present. This work reviews cloud microphysics schemes used in GCRMs with introductions...

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere-ocean 2022-08, Vol.60 (3-4), p.477-505
Main Authors: Seiki, Tatsuya, Roh, Woosub, Satoh, Masaki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global cloud resolving models (GCRMs) are a new type of general circulation model that explicitly calculates the growth of cloud systems with fine spatial resolutions and more than 10 GCRMs have been developed at present. This work reviews cloud microphysics schemes used in GCRMs with introductions to the recent progress and researches with GCRMs. Especially, research progress using a pioneer of GCRMs, Nonhydrostatic ICosahedral Atmospheric Model (NICAM), is focused. Since GCRMs deal with climatology and meteorology, it is a challenging issue to establish cloud microphysics schemes for GCRMs. A brief history of the development of cloud microphysics schemes and cloud-radiation coupling in NICAM is described. In addition, current progress in analytical techniques using satellite simulators is described. The combined use of multi-optical sensors enables us to constrain uncertain processes in cloud microphysics without artificial tuning. As a result, cloud microphysics schemes used in the NICAM naturally represent cloud systems, and hence, the radiative budget is well balanced with little optimization. Finally, a new satellite and a ground validation campaign are introduced for future work.
ISSN:0705-5900
1480-9214
DOI:10.1080/07055900.2022.2075310