Loading…

In silico study of cox protein from P2 type enteric bacteriophages based on sequence, structure and dynamics to understand its functional integrity

Cox protein plays a critical role in deciding the lytic-lysogenic switch of P2 enteric phages. This phenomenon makes Cox protein one of the most important candidates in developing novel phage-based therapeutics against antibacterial resistant pathogens. The principle focus concerning protein and its...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomolecular structure & dynamics 2022-01, Vol.40 (24), p.14035-14050
Main Authors: Hazra, Mousumi, Dubey, Ramesh Chandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cox protein plays a critical role in deciding the lytic-lysogenic switch of P2 enteric phages. This phenomenon makes Cox protein one of the most important candidates in developing novel phage-based therapeutics against antibacterial resistant pathogens. The principle focus concerning protein and its decision making is a DNA binding event, which helps to regulate differential promoter expression. In the current study, we have attempted to understand the sequence, structural and dynamic features associated with Cox protein and its DNA binding. Unavailability of information was a big burden in further proceedings. We have done an extensive literature search to develop a database of Cox with relevant information. That information coupled with the methods of Sequence-based phylogenetic and conservation studies, Homology Modelling, Atomic-level Docking and Molecular Dynamics (MD) Simulation (50 ns each for 10 systems, i.e. total of 500 ns) were performed in the current study. Analysis of those extensive studies has provided us the required sequence to structure to dynamics to functional understanding. Our present study would indeed be very helpful in understanding the biochemical mechanism of Cox activation as well as designing potential phage therapeutics.
ISSN:0739-1102
1538-0254
DOI:10.1080/07391102.2021.2000496