Loading…
Backpropagation neural network analysis applied to β-sheet breakers used against Alzheimer's amyloid aggregation
Structure-activity relationships of β-sheet inhibitors against Alzheimer's Aβ(1-42) amyloid aggregation were studied by backpropagation neural network analysis. It was found that the total and electrostatic energies of geometry-optimized conformations of the ligands, and the hydration energy, s...
Saved in:
Published in: | Molecular simulation 2002-03, Vol.28 (3), p.239-247 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c296t-10f4d755a5cf6325c8b40e88cb8863e13b3b674ad0404ccf81f8fdb1a61c4eb63 |
---|---|
cites | |
container_end_page | 247 |
container_issue | 3 |
container_start_page | 239 |
container_title | Molecular simulation |
container_volume | 28 |
creator | Mager, Peter |
description | Structure-activity relationships of β-sheet inhibitors against Alzheimer's Aβ(1-42) amyloid aggregation were studied by backpropagation neural network analysis. It was found that the total and electrostatic energies of geometry-optimized conformations of the ligands, and the hydration energy, simulate the biological potency. |
doi_str_mv | 10.1080/08927020290014358 |
format | article |
fullrecord | <record><control><sourceid>crossref_infor</sourceid><recordid>TN_cdi_crossref_primary_10_1080_08927020290014358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1080_08927020290014358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-10f4d755a5cf6325c8b40e88cb8863e13b3b674ad0404ccf81f8fdb1a61c4eb63</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqVwAHbesQqMHSd1JTalooBUiQ2so4ljt6ZJHGxXqByLg3AmXJUdYjX6-vP-aD4hlwyuGUi4ATnlE-DApwBM5IU8IiOWVAZJHJPR3s_SAj8lZyG8AXBWiHJE3u9QbQbvBlxhtK6nvd56bNOIH85vKPbY7oINFIehtbqh0dHvryystY609ho32ge6DclJCbYPkc7az7W2nfZXiep2rbN7b-X14cI5OTHYBn3xO8fkdXH_Mn_Mls8PT_PZMlN8WsaMgRHNpCiwUKbMeaFkLUBLqWopy1yzvM7rciKwAQFCKSOZkaapGZZMCV2X-ZiwQ67yLgSvTTV426HfVQyqfWfVn84Sc3tgbG-c7zBV0DZVxPSENx57ZUOV_4__ABqmdRk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Backpropagation neural network analysis applied to β-sheet breakers used against Alzheimer's amyloid aggregation</title><source>Taylor and Francis Science and Technology Collection</source><creator>Mager, Peter</creator><creatorcontrib>Mager, Peter</creatorcontrib><description>Structure-activity relationships of β-sheet inhibitors against Alzheimer's Aβ(1-42) amyloid aggregation were studied by backpropagation neural network analysis. It was found that the total and electrostatic energies of geometry-optimized conformations of the ligands, and the hydration energy, simulate the biological potency.</description><identifier>ISSN: 0892-7022</identifier><identifier>EISSN: 1029-0435</identifier><identifier>DOI: 10.1080/08927020290014358</identifier><language>eng</language><publisher>Taylor & Francis Ltd</publisher><subject>Aβ peptide ; Morbus Alzheimer ; Neural networks ; β-sheet breakers</subject><ispartof>Molecular simulation, 2002-03, Vol.28 (3), p.239-247</ispartof><rights>Copyright Taylor & Francis Group, LLC 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-10f4d755a5cf6325c8b40e88cb8863e13b3b674ad0404ccf81f8fdb1a61c4eb63</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Mager, Peter</creatorcontrib><title>Backpropagation neural network analysis applied to β-sheet breakers used against Alzheimer's amyloid aggregation</title><title>Molecular simulation</title><description>Structure-activity relationships of β-sheet inhibitors against Alzheimer's Aβ(1-42) amyloid aggregation were studied by backpropagation neural network analysis. It was found that the total and electrostatic energies of geometry-optimized conformations of the ligands, and the hydration energy, simulate the biological potency.</description><subject>Aβ peptide</subject><subject>Morbus Alzheimer</subject><subject>Neural networks</subject><subject>β-sheet breakers</subject><issn>0892-7022</issn><issn>1029-0435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNp1kEFOwzAQRS0EEqVwAHbesQqMHSd1JTalooBUiQ2so4ljt6ZJHGxXqByLg3AmXJUdYjX6-vP-aD4hlwyuGUi4ATnlE-DApwBM5IU8IiOWVAZJHJPR3s_SAj8lZyG8AXBWiHJE3u9QbQbvBlxhtK6nvd56bNOIH85vKPbY7oINFIehtbqh0dHvryystY609ho32ge6DclJCbYPkc7az7W2nfZXiep2rbN7b-X14cI5OTHYBn3xO8fkdXH_Mn_Mls8PT_PZMlN8WsaMgRHNpCiwUKbMeaFkLUBLqWopy1yzvM7rciKwAQFCKSOZkaapGZZMCV2X-ZiwQ67yLgSvTTV426HfVQyqfWfVn84Sc3tgbG-c7zBV0DZVxPSENx57ZUOV_4__ABqmdRk</recordid><startdate>20020301</startdate><enddate>20020301</enddate><creator>Mager, Peter</creator><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20020301</creationdate><title>Backpropagation neural network analysis applied to β-sheet breakers used against Alzheimer's amyloid aggregation</title><author>Mager, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-10f4d755a5cf6325c8b40e88cb8863e13b3b674ad0404ccf81f8fdb1a61c4eb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Aβ peptide</topic><topic>Morbus Alzheimer</topic><topic>Neural networks</topic><topic>β-sheet breakers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mager, Peter</creatorcontrib><collection>CrossRef</collection><jtitle>Molecular simulation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mager, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Backpropagation neural network analysis applied to β-sheet breakers used against Alzheimer's amyloid aggregation</atitle><jtitle>Molecular simulation</jtitle><date>2002-03-01</date><risdate>2002</risdate><volume>28</volume><issue>3</issue><spage>239</spage><epage>247</epage><pages>239-247</pages><issn>0892-7022</issn><eissn>1029-0435</eissn><abstract>Structure-activity relationships of β-sheet inhibitors against Alzheimer's Aβ(1-42) amyloid aggregation were studied by backpropagation neural network analysis. It was found that the total and electrostatic energies of geometry-optimized conformations of the ligands, and the hydration energy, simulate the biological potency.</abstract><pub>Taylor & Francis Ltd</pub><doi>10.1080/08927020290014358</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0892-7022 |
ispartof | Molecular simulation, 2002-03, Vol.28 (3), p.239-247 |
issn | 0892-7022 1029-0435 |
language | eng |
recordid | cdi_crossref_primary_10_1080_08927020290014358 |
source | Taylor and Francis Science and Technology Collection |
subjects | Aβ peptide Morbus Alzheimer Neural networks β-sheet breakers |
title | Backpropagation neural network analysis applied to β-sheet breakers used against Alzheimer's amyloid aggregation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Backpropagation%20neural%20network%20analysis%20applied%20to%20%CE%B2-sheet%20breakers%20used%20against%20Alzheimer's%20amyloid%20aggregation&rft.jtitle=Molecular%20simulation&rft.au=Mager,%20Peter&rft.date=2002-03-01&rft.volume=28&rft.issue=3&rft.spage=239&rft.epage=247&rft.pages=239-247&rft.issn=0892-7022&rft.eissn=1029-0435&rft_id=info:doi/10.1080/08927020290014358&rft_dat=%3Ccrossref_infor%3E10_1080_08927020290014358%3C/crossref_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-10f4d755a5cf6325c8b40e88cb8863e13b3b674ad0404ccf81f8fdb1a61c4eb63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |